Благоустрой... Вредители Выращивание 

Преобразователь напряжение-ток с точно устанавливаемой зоной нечувствительности. Микросхемы для измерения тока Схемы преобразователя ток в напряжение на ацп

В измерительных схемах сигналы постоянного тока часто используются в качестве аналоговых представлений физических измерений, таких как температура, давление, поток, вес и движение. Чаще всего сигналам постоянного тока отдается предпочтение по сравнению с сигналами постоянного напряжения , поскольку сигналы тока точно равны по величине во всем контуре схемы, несущей ток от источника (измерительного устройства) до нагрузки (индикатор, устройство записи или контроллер), тогда как сигналы напряжения в аналогичной схеме могут изменяться от одного конца к другому из-за резистивных потерь проводников. Кроме того, приборы для измерения тока обычно имеют низкие импедансы (в том время как приборы для измерения напряжения имеют высокие импедансы), что дает инструментам измерения тока бо́льшую устойчивость к электрическим помехам.

Чтобы использовать ток как аналоговое представление физической величины, мы должны иметь какой-то способ генерации точной величины тока в сигнальной схеме. Но как мы создадим точный токовый сигнал, когда не можем знать сопротивление контура? Ответ заключается в использовании усилителя, предназначенного для поддержания тока на заданном значении, прикладывая столько много или столько мало напряжения, сколько необходимо для цепи нагрузки, чтобы поддерживать это заданное значение тока. Такой усилитель выполняет функцию источника тока . Операционный усилитель с отрицательной обратной связью является идеальным кандидатом на такую задачу:

Предполагается, что входное напряжение этой схемы исходит от какого-либо устройства физического преобразователя / усилительного устройства, откалиброванного для получения 1 вольта для 0% при физическом измерении и 5 вольт для 100% при физическом измерении. Стандартный диапазон аналогового токового сигнала составляет от 4 мА до 20 мА, что означает от 0% до 100% диапазона измерений, соответственно. При входе 5 вольт резистор (точный) 250 Ом будет иметь приложенное к нему напряжение 5 вольт, что приведет к току 20 мА в схеме большого контура (с R нагр). Не имеет значения, чему равно сопротивление R нагр, и чему равно сопротивление проводов в этом большом контуре, если операционный усилитель имеет напряжение питания, достаточно высокое для выдачи напряжения, которое необходимо для получения 20 мА, протекающих через R нагр. Резистор 250 Ом устанавливает соотношение между входным напряжением и выходным током, в этом случае создавая равнозначность 1-5 В на входе / 4-20 мА на выходе. Если бы мы преобразовывали входной сигнал 1-5 вольт и выходной сигнал 10-50 мА (более старый, устаревший измерительный стандарт промышленности), вместо этого мы использовали бы точный резистор 100 Ом.

Другим названием этой схемы является «усилитель крутизны ». В электронике крутизна представляет собой математический коэффициент, равный изменению тока, деленному на изменение напряжения (ΔI/ΔV), и измеряется в сименсах (См), в тех же единицах, что используются для выражения проводимости (математически, величина, обратная сопротивлению: ток/напряжение). В данной схеме коэффициент крутизны фиксируется величиной резистора 250 Ом, что дает линейную связь выходной_ток/входное_напряжение.

Резюме

  • В промышленности токовые сигналы постоянного тока часто используются вместо сигналов постоянного напряжения как аналоговые представления физических величин. Ток в последовательной цепи абсолютно одинаков во всех точках этой схемы независимо от сопротивления проводов, тогда как напряжение в аналогичной схеме может изменяться от одного конца к другому из-за сопротивления проводов, что делает токовые сигналы более точными для передачи сигнала от «передающего» прибора до «принимающего» прибора.
  • Сигналы напряжения относительно легко получить непосредственно на устройствах преобразователей, тогда как точные токовые сигналы нет. Для «преобразования» сигнала напряжения в токовый сигнал можно довольно просто использовать операционные усилители. В этом режиме операционный усилитель буде выводить любое напряжение, необходимое для поддержания тока через сигнальную цепь в правильном значении.

Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному напряжению и не зависеть от сопротивления нагрузки. В частности, при постоянном входном напряжении ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Простейшая схема стабилизатора тока, показанная на рис. 10.41, а, представляет собой инвертирующий усилитель, в котором нагрузка Rn включена в цепь отрицательной обратной связи ОУ. Ток в нагрузке будет равен Ui/Rl. Для уменьшения нагрузки на источник входного напряжения он подключается к неинвертирующему входу ОУ. Именно так и сделано в стабилизаторе тока на рис. 10.41, б, для которого ток в нагрузке равен (Ui/Rl)(l+Rl/R2)(l+R2/R4).



В стабилизаторах тока на рис. 10.41 нагрузка не заземлена, что не всегда удобно. С этой точки зрения предпочтительнее стабилизатор тока с заземленной нагрузкой (рис. 10.42). Ток в нагрузке Rn такого стабилизатора определяется формулой Ii=UiA/B, где A=Rl(R4+R5)R2 -R4; B=Rn+Rl R5(R3+R4). Условием независимости Ii от Rn является равенство R1(R4+R5)-R2-R3. В таком случае будем иметь Ii=Ui-R2/(Rl-R5).

Отметим, что если в стабилизаторе на рис. 10.42 подавать Ui через резистор R1 на инвертирующий вход ОУ, а резистор R3 заземлить, то при выполнении условия R1(R4+R5)=R2-R3 ток в нагрузке только изменит знак.

Одним из многочисленных применений преобразователей являются преобразователи сопротивления в напряжение (ПСН), применяемые в сочетании с резистив-ными датчиками. Для построения ПСН обычно включают преобразуемое сопротивление в качестве нагрузки стабилизатора тока. Тогда падение напряжения на этом сопротивлении будет пропорционально его сопротивлению. На практике удобно использовать ПСН, имеющие малое выходное сопротивление. Этому требованию в наибольшей степени отвечает ПСН на основе стабилизатора тока, схема которого показана на рис. 10.41, а. Действительно, напряжение на выходе ОУ в этом стабилизаторе равно Ui-Rn/Rl. Следовательно, в качестве выходного напряжения ПСН можно использовать не падение напряжения на резисторе Rn, а выходное напряжение ОУ. При этом выходное сопротивление такого ПСН будет весьма низким, как и в любом усилителе, имеющем отрицательную обратную связь по напряжению.

Удобен для применения ПСН, выполненный на основе стабилизатора тока на рис. 10.42. Такой ПСН характеризуется не только малым выходным сопротивлением, но и возможностью заземления резистивного преобразователя. Если принять R4=0 и R1-R5=R2-R3, то выходное напряжение ОУ в этом стабилизаторе равно Uo=Ui-Rn(l+R2/Rl)/R3.

Дополнительным достоинством ПСН на стабилизаторе (рис. 10.42) является возможность скорректировать погрешность нелинейности прибора, обусловленную нелинейностью характеристики датчика. Если выбрать R1-R5>R2-R3, то зависимость Uo от Rn будет нелинейной - чувствительность будет падать с ростом Rn. Если же поменять знак неравенства, то, наоборот, чувствительность будет расти с ростом Rn. Следовательно, выбирая знак и величину разности R1-R5-R2-R3, можно получить характеристику преобразования сопротивления в напряжение с компенсацией нелинейности датчика.

Контрольные вопросы и задания

1. Какую функцию выполняют преобразователи напряжение-ток и сопротивление-напряжение?

2. Схема измерителя сопротивления (ПСН) на стабилизаторе тока по схеме рис. 10.41, а показана на рис. 10.43. Какими должны быть значения напряжения Ui и сопротивления R1, чтобы при измерении выходного напряжения Uo показания мультиметра совпадали с сопротивлением измеряемого резистора Rx с коэффициентом кратности 10-k где k - любое целое число, в том числе и ноль. Расчеты подтвердите моделированием.

3. Дополните схему преобразователя на рис. 10.42 необходимыми контрольно-измерительными приборами и проведите ее моделирование, выбрав номиналы резисторов с помощью приведенных выше формул.


Рис. 10.43. Схема измерителя сопротивления Rx

На рис. 4.8 показан простой вариант преобразователя напряжения в ток всего на одном ОУ. Благодаря действию обратной связи входное напряжение и падение напряжения на резисторе равны. Через нагрузку течет тот же самый ток, что и через резистор поэтому . Ток в нагрузке не зависит от при условии, что ОУ работает в линейном режиме (не насыщается).

Коэффициенты преобразования.

Входное сопротивление.

Для инвертирующего преобразователя:

Для неинвертирующего преобразователя:

где - входное сопротивление для синфазного сигнала ОУ А.

Выходное сопротивление инвертирующего и неинвертирующего преобразователей:

Рис. 4.8. Два варианта схем ПНТ.

Выходной ток смещения инвертирующего и неинвертирующего преобразователей:

где - входное напряжение смещения ОУ, - входной ток смещения ОУ.

Максимальный выходной ток ограничивается напряжением питания ОУ и импедансом нагрузки.

Для инвертирующей схемы:

Для неинвертирующей схемы:

где - выходное напряжение насыщения ОУ.

Максимальный выходной ток может ограничиваться и встроенной защитой самого ОУ. В этом случае для увеличения тока к выходу ОУ можно подключить усилитель мощности (ряс. 4.9).

Неинвертирующая схема на рис. 4.8 имеет высокое входное сопротивление, так как входной сигнал подается непосредственно на вход ОУ. Входное сопротивление инвертирующей схемы равно сопротивлению резистора которое может быть сравнительно небольшим. Кроме того, в инвертирующей схеме источник управляющего напряжения должен обеспечивать и весь выходной ток. Для получения большого коэффициента

преобразования при сохранении приемлемого сопротивления резистора в цепь обратной связи можно включить делитель (рис. 4.9). У этого способа есть недостаток - уменьшается коэффициент передачи цепи обратной связи, а это снижает линейность и точность преобразования, а также уменьшает выходное сопротивление.

Выходное сопротивление в этом случае равно:

т.е. уменьшается в раз.

При работе на большую индуктивную нагрузку (например, обмотку реле или двигателя) позаботьтесь о том, чтобы не превысить допустимые параметры ОУ из-за возникновения больших обратных ЭДС. Для защиты ОУ и других элементов включаются дополнительные диоды. Кроме того, при индуктивной нагрузке возникают проблемы с устойчивостью схемы. Индуктивность в цепи обратной связи добавляет лишний полюс в частотной характеристике, что может вызвать неустойчивость и привести к самовозбуждению устройства. Для борьбы с этим включаются корректирующие конденсатор и резистор, показанные на рис. 4.9.

Включение еще одного ОУ превращает исходную схему в ПНТ с дифференциальным входом (рис. 4.10).

Для плавающих источников управляющих напряжений применяются схемы, приведенные на рис. 4.11, причем достоинство схем б) и в) состоит в том, что они отдают ток в заземленную нагрузку. Из-за действия обратной связи падение напряжения на резисторе равно входному напряжению Ток, протекающий через резистор должен течь и через нагрузку, что приводит к желаемому результату.

Выходное сопротивление для схемы а):

а для схем б) и в):

Общее смещение, приведенное к входу, для схем а), б) и в):

где - коэффициент усиления ОУ А,

КОСС - коэффициент ослабления синфазного сигнала ОУ А, - входное напряжение смещения ОУ А, - входной ток смещения ОУ А.

Выходное напряжение для схем а), б) и в):

Рис. 4.9. Применение усилителя мощности и делителя в цепи обратной связи.

Если схема а) имеет плавающие источники литания, то можно подключить точку Р к общему проводу для того, чтобы заземлить входной сигнал и нагрузку.

Сопротивление утечки между плавающими зажимами источника сигнала и землей не влияет на работу схемы в). Однако оно сказывается на работе схем а) и б), так как по сопротивлениям утечки отводится часть выходного тока от токозадающего резистора

Магнитоэлектрический механизм, включенный непосредственно в измерительную цепь, позволяет измерять малые постоянные токи, не превышающие 20-50 мА. Превышение указанных значений может привести к повреждениям провода рамки и спиральной пружины. Таким образом, сам магнитоэлектрический механизм может выступать только в роли микроамперметра или миллиамперметра. Для того чтобы измерять большие токи, используют измерительные цепи, включающие в себя шунты. Шунт является простейшим измерительным преобразователем тока в напряжение. Он представляет собой четырехзажимный резистор. Два входных зажима, к которым подводится ток /, называются токовыми, а два выходных зажима, с которых снимается напряжение V, называются потенциальными. К потенциальным зажимам обычно присоединяют измерительный механизм ИМ прибора.

Шунт характеризуется номинальным значением входного тока / ном и номинальным значением выходного напряжения?/ ном. Их отношение определяет номинальное сопротивление шунта

К ш = ^ном/4юм- Шунты применяются для расширения пределов измерения измерительных механизмов по току, при этом большую часть измеряемого тока пропускают через шунт, а меньшую - через измерительный механизм. Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.

На рис. 4.1 приведена схема включения магнитоэлектрического механизма ИМ с шунтом Я ш. Ток / и, протекающий через измерительный механизм, связан с измеряемым током / зависимостью

Рис. 4.1.

где Я и - сопротивление измерительного механизма.

Если необходимо, чтобы ток / и был в п раз меньше тока /, то сопротивление шунта должно быть:

К = Я и /(/7 - 1),

где п = ///„ - коэффициент шунтирования.

Шунты изготовляют из манганина, сплава с высоким удельным сопротивлением и малой зависимостью его от температуры. Если шунт рассчитан на небольшой ток, то его обычно встраивают в корпус прибора (внутренние шунты). Для измерения больших токов используют приборы с наружными шунтами. В этом случае мощность, рассеиваемая в шунте, не нагревает прибор.

На рис. 4.2 показан наружный шунт на 20 А. Он имеет массивные наконечники из меди 4, которые служат для отвода тепла от манганиновых пластин 3, впаянных между ними. Зажимы шунта 1 - токовые.

Измерительный механизм присоединяют к потенциальным зажимам 2, между которыми и заключено сопротивление шунта. При таком включении измерительного механизма устраняются погрешности от контактных сопротивлений.

Рис. 4.2. Наружный шунт: I - токовые зажимы; 2 - потенциальные зажимы; 3 - манганиновые пластины; 4 - медные наконечники

Наружные шунты обычно выполняются калиброванными, т. е. рассчитываются на определенные токи и падения напряжения. По ГОСТ 8042-93 калиброванные шунты должны иметь номинальное падение напряжения 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

Для переносных магнитоэлектрических приборов на токи до 30 А внутренние шунты изготовляют на несколько пределов измерения. На рис. 4.3, а, б показаны схемы многопредельных шунтов. Многопредельный шунт состоит из нескольких резисторов, которые можно переключать в зависимости от предела измерения путем переноса провода с одного зажима на другой (рис. 4.3, а) или переключателем (рис. 4.3, б).

Рис. 4.3. Схемы многопредельных шунтов: а - шунта с отдельными выводами;

б - шунта, с переключателем

Применение шунтов с измерительными механизмами других систем, кроме магнитоэлектрической, нерационально, так как другие измерительные механизмы потребляют большую мощность, что приводит к существенному увеличению сопротивления шунтов и, следовательно, к увеличению их размеров и потребляемой мощности.

Шунты разделяются на классы точности 0,02; 0,05; 0,1; 0,2 и 0,5. Число, определяющее класс точности, обозначает допустимое отклонение сопротивления шунта в процентах его номинального значения.

Серийные шунты выпускаются для токов не более 5000 А. Для измерения токов свыше 5000 А допустимо параллельное соединение шунтов.

Добавочные резисторы являются измерительными преобразователями напряжения в ток, а на значение тока непосредственно реагируют измерительные механизмы стрелочных вольтметров всех систем, за исключением электростатической и электронной. Добавочные резисторы служат для расширения пределов измерения по напряжению вольтметров различных систем и других приборов, имеющих параллельные цепи, подключаемые к источнику напряжения. Сюда относятся, например, ваттметры, счетчики энергии, фазометры и т. д.

Добавочный резистор включают последовательно с измерительным механизмом (рис. 4.4). Ток / и в цепи, состоящий из измерительного механизма с сопротивлением К и и добавочного резистора с сопротивлением Я а составит:

/„ = тк + /у,

где и - измеряемое напряжение.

Рис. 4.4.

с добавочным резистором

Если вольтметр имеет предел измерения?/ ||0М и сопротивление измерительного механизма и при помощи добавочного резистора Л л надо расширить предел измерения в п раз, то, учитывая постоянство тока / и, протекающего через измерительный механизм вольтметра, можно записать:

и ном /К = я?4юм/(Я и + я д),

Добавочные резисторы изготовляются обычно из изолированной манганиновой проволоки, намотанной на пластины или каркасы из изоляционного материала.

Они применяются в цепях постоянного и переменного тока. Добавочные резисторы, предназначенные для работы на переменном токе, имеют бифилярную обмотку для уменьшения собственной индуктивности.

При применении добавочных резисторов не только расширяются пределы измерения вольтметров, но и уменьшается их температурная погрешность. Если принять, что обмотка измерительного механизма имеет температурный коэффициент сопротивления Р и, а добавочный резистор - температурный коэффициент сопротивления, то температурный коэффициент всего вольтметра (см. рис. 4.4) равен:

Р = (РА + РА)/А + /у

Обычно Р л = 0, тогда

В переносных приборах добавочные резисторы изготовляются секционными на несколько пределов измерения (рис. 4.5).

  • 75 мВ

Рис. 4.5.

Добавочные резисторы бывают внутренние и наружные. Последние выполняются в виде отдельных блоков и подразделяются на индивидуальные и калиброванные. Индивидуальный резистор применяется только с тем прибором, который с ним градуировался. Калиброванный резистор может применяться с любым прибором, номинальный ток которого равен номинальному току добавочного резистора.

Калиброванные добавочные резисторы делятся на классы точности 0,01; 0,02; 0,05; 0,1; 0,2; 0,5 и 1,0. Они выполняются на номинальные токи от 0,5 до 30 мА.

Добавочные резисторы применяются для преобразования напряжений до 30 кВ.

Шунты.

Шунт является простейшим измерительным преобразователем тока в напряжении. Он предназначен для расширения пределов измерения по току. При этом большую часть измеряемого тока пропускают через шунт, а меньшую - через измерительный механизм прибора. Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.

Шунт представляет собой четырёхзажимный резистор. Два входных (силовых) зажима, через которые шунт включается в измеряемую цепь, называются токовыми, а два других, с которых снимается напряжение U, подводимое к измерительному механизму – потенциальными – рис.3.1.

I u И М

Рис. 3.1. Схема включения шунта.

Шунт характеризуется номинальным значением I ном и номинальным значением выходного напряжения U ном . Их отношения определяет номинальное сопротивление шунта:

R ш =U ном /I ном.

В измерительный механизм прибора отбирается часть измеряемого токаI :

I u = I R ш / (R ш + R u)

где R u – сопротивление измерительного механизма. Если необходимо, чтобы ток I u был вn раз меньше тока I , то сопротивление шунта должно быть:

R ш = R u / (n-1)

где n = I /I u - коэффициент шунтирования.

Шунты изготавливаются из манганина, сопротивление которого незначительно меняется от температуры. Шунты могут быть встроенные в прибор (при токах до 30 А) или наружные. Наружные шунты изготавливаются калиброванными, рассчитанными на определённые токи и имеющие одно из стандартных значений выходного напряжения: 10; 15; 30; 50; 75; 100; 150 и 300 мВ. Серийные шунты выпускаются для токов до 5000А. Классы точности серийных шунтов от 0,02 до 0,5.

Для многопредельных магнитоэлектрических приборов

Чувствительность измерительного преобразователя – это отношение изменения выходного сигнала к вызвавшему его изменению входного сигнала. Отношение S=ΔY/ΔX есть средняя чувствительность преобразователя на интервале ΔХ, а предел, к которому стремится это отношение при ΔХ→ 0, есть чувствительность преобразователя в точке Х:



S ═ lim S cp ═ -- .

ΔX→0 dX

Если Y и Х величины однородные, то чувствительность величина безразмерная. Различают абсолютную и относительную чувствительности преобразователя. Абсолютная чувствительность – это S=dY/dX, а относительная – S 0 =(dY/Y)/(dX/X). Например, чувствительность тензо-метрического преобразователя определяется как отношение относительного изменения электрического сопротивления ΔR/R к относительной деформации Δl/l.

Если функция преобразования линейна, то S - соnst и не зависит от Х. Например, если у=ах+ b, то S=а.

Если функция преобразования нелинейна, то S≠S cp и зависит от Х. Например, если у=ах 2 +b, то а=2ах.

Порог реагирования – это минимальное изменение входной величины, вызывающее уверенно различимое приращение выходной величины преобразователя на фоне шумов, смещения нуля, гистерезиса характеристики и прочих мешающих факторов.

Входное и выходное сопротивления определяют степень согласования преобразователя с источником сигнала и с нагрузкой. Так, если преобразуемый сигнал напряжение, то Z вх должно быть максимальным, а если ток – то минимальным. В общем виде входное сопротивление должно быть таким, чтобы минимизировать мощность, потребляемую от источника сигнала.

Быстродействие характеризует способность быстро реагировать на

изменение входного сигнала. В общем виде динамические свойства преобразователя характеризуются дифференциальным уравнением, связывающим выходную и входную величины. Решение этого уравнения при известном х(t) дает значение у(t). Порядок уравнения и его коэффициенты определяются структурой и параметрами преобразователи. На практике такую методику в прямом виде практически не используют в связи со сложностью решения дифференциальных уравнений высоких порядков.

Чаще для описания динамических свойств преобразователей используют характеристические функции, которые можно получить экспериментально, подавая на вход специальный тестовый сигнал, например, скачкообразный или гармонический. Реакция преобразователи на скачкообразное входное воздействие единичной амплитуды называется переходной функцией преобразователя h(t). Очень часто сложный преобразователь при анализе динамических процессов разбивают на простейшие динамические звенья. Переходные функции основных

не зависит от температуры. Температурный коэффициент прибора с дополнительным сопротивлением меньше температурного коэффициента измерительного механизма в R u / (R u + R д) раз.

В многопредельных приборах добавочные резисторы изготавливаются секционными – рис. 3.3.