Благоустрой... Вредители Выращивание 

Принципиальная схема счетчика на 24 выхода. Реализация электронного счетчика электроэнергии на микроконтроллере серии MSP430FE42x. Составление структурной схемы счётчика

Это устройство предназначено для подсчета числа оборотов вала механического устройства. Кроме простого подсчета с индикацией на светодиодном табло в десятичных числах, счетчик выдает информацию о числе оборотов в двоичном десятиразрядном коде, что может быть использовано при конструировании автоматического устройства. Счетчик состоит из оптического датчика оборотов, представляющего собой оптопару из постоянно светящегося ИК-светодиода и фотодиода, между которыми расположен диск из непрозрачного материала, в котором вырезан сектор. Диск закреплен на валу механического устройства, количество оборотов которого нужно считать. И, комбинации из двух счетчиков, - десятичного трехразрядного с выводом на светодиодные семисегментные индикаторы, и двоичного десятиразрядного. Счетчики работают синхронно, но независимо друг от друга. Светодиод HL1 излучает непрерывный световой поток, которые поступает на фотодиод через прорезь в измерительном диске. При вращении диска получаются импульсы, а поскольку, прорезь в диске одна, то число этих импульсов равно числу оборотов диска. Триггер Шмитта на D1.1 и D1.2 преобразует импульсы напряжения на R2, вызванные изменением фототока через фотодиод, в импульсы логического уровня, пригодные для восприятия счетчиками серии К176 и К561. Число импульсов (число оборотов диска) одновременно подсчитывает двумя счетчиками - трехдекадным десятичным на микросхемах D2-D4 и двоичным на D5. Информация о числе оборотов выводится на цифровое табло, составленное из трех семисегментных светодиодных индикаторов Н1-Н3, и в виде десятиразрядного двоичного кода, который снимается с выходов счетчика D5. Обнуление всех счетчиков в момент включения питания происходит одновременно, чему способствует наличие элемента D1.3. При потребности в кнопке обнуления, её можно подключить параллельно конденсатору С1. Если нужно, чтобы сигнал обнуления поступал от внешнего устройства или логической схемы, нужно микросхему К561ЛЕ5 заменить на К561ЛА7, и отсоединить её вывод 13 от вывода 12 и С1. Теперь обнуление можно будет сделать, подав, от внешнего логического узла, логический ноль на вывод 13 D1.3. В схеме можно использовать другие светодиодные семисегментные индикаторы, аналогичные АЛС324. Если индикаторы с общим катодом, - нужно на выводы 6 D2-D4 подать не единицу, а ноль. Микросхемы К561 можно заменить аналогами серий К176, К1561 или импортными аналогами. Светодиод - любой ИК-светодиод (от пульта ДУ аппаратуры). Фотодиод - любой из тех, что использовался в системах ДУ телевизоров типа УСЦТ. Настройка состоит в установке чувствительности фотодиода подбором номинала R2.

Радиоконструктор №2 2003г стр. 24

-20 dB писал:
А почему не подойти к делу малой кровью? Если есть что-то вроде уже упомянутого выше ИЖЦ5-4/8, с раздельными выводами сегментов?

В заначках с советских времён неиспользуемых К176ИЕ4 осталось море (счетчик/делитель на 10 с семисегментным дешифратором и выходом переноса, использовался для формирования единиц минут и часов в электронных часах, неполный аналог - CD4026 - в чём неполнота, не смотрел... пока) в классическом включении для управления ЖК. 4 шт - по 2 на канал, + 2 шт. 176(561)ЛЕ5 или ЛА7 - одна для формирователей одиночных импульсов (подавителей дребезга контактов), вторая - для формирования меандра для "засветки" ЖК индикатора?

Конечно, на МП решение красивее, но на мусоре - дешевле, и решается исключительно на коленке... С программированием МП, например, у меня туго (если только готовый дамп кто-то подсуетит) - мне с железяками проще.


Ну вот тут я готов поспорить. Давайте посчитаем. Для начала стоимость:
1. PIC12LF629 (SOIC-8) - 40руб. (~1,15$)
2. Дисплей от Моторола С200/С205/Т190/Т191 - около 90руб (~2.57$) Кроме того разрешение 98х64 - рисуй и пиши чо хочешь.
3. Рассыпуха (SMD-резюки, кнопочки, SMD-конденсаторы и прочее) на вскидку - около 50руб. (~1,42$)

Итого: ~180руб (~5$)

Корпус, аккум (я бы выбрал Lo-Pol акк от той же моторолки С200 - компактно, ёмко, недорого (сравнительно)) - не считаем, так как и то и другое нужно в обоих вариантах.

Теперь Ваш вариант:

1. ИЖЦ5-4/8 - около 50руб (~1.42$)
2. К176ИЕ4 (CD4026) - 15руб (~0,42$)x4=60руб(~1.68$)
3. К176ЛА7 - 5руб (~0,14$)x4=20руб(~0.56$)
4. Рассыпуха (SMD-резюки, кнопочки, SMD-конденсаторы и прочее) на вскидку - около 50руб. (~1,42$)

Итого: ~180руб(~5$)

В чём выгода?

Теперь прикинем ТТХ и функционал:

У варианта с МК поторебление будет максимум 20мА, в то время как в Вашем варианте, я думаю раза в 1,5...2 больше. Кроме того в Вашем варианте - сложность (относительная) печатной платы на 7 корпусах+многогогая ИЖЦ5-4/8 (наверняк - двусторонняя), невозможность модернизировать устройство (добавить или изменить функционал) не влезая в схему (только на программном уровне), отсутствие возможности организовать память на измерения (счёт), питание не менее 5В (с меньшего Вы не раскачаете ИЖЦ), вес и габариты. Можно много ещё привести доводов. Теперь вариант с МК. Про ток потребления уже написал - 20мА макс. + возможность спящего режима (потребление - 1...5 мА (в основном - LCD)), сложность платы для одной 8-ногой микросхемы и 5 выводного разъёмчика для мотороловского LCD - смешно даже говорить. Гибкость (можно программно, без изменения схемы и платы наворотить такого - волосы дыбом встанут), информативность графического 98х64 дисплея - ни в какое сравнение с 4,5 разрядами 7-сегментного ИЖЦ. питание - 3...3,5В (можно даже таблеточку CR2032, но лучше всё таки Li-Pol от мабылы). Возможность организации многоячейной памяти на результаты измерений (счёта) прибора - опять таки только на программном уровне без вмешательства в схему и плату. Ну и наконец - габариты и вес ни в какое сравнение с Вашим вариантом. Аргумент - "я не умею программировать" не принимется - кто хочет, тот найдёт выход. Я до вчерашнего дня не умел работать с дисплеем от мобильника Моторола С205. Теперь умею. Прошли сутки. Потому что мне это НАДО. В конце концов Вы правы - можно кого нибудь и попросить.)) Вот примерно так. И не в красоте дело, а в том, что дискретная логика безнадёжно устарела как морально так и технически в качестве основного элемента схемотехники. То, для чего требовались десятки корпусов с диким общим потреблением, сложностью ПП и огромными габаритами, теперь можно собрать а 28-40 ногом МК легко и непринуждённо - поверьте мне. Сейчас даже инфы по МК гораздо больше чем по дискретной логике - и это вполне объяснимо.

Как и триггеры, счетчики совсем необязательно составлять из логических элементов вручную – сегодняшняя промышленность выпускает самые разнообразные счетчики уже собранные в корпуса микросхем. В этой статье я не буду останавливаться на каждой микросхеме-счетчике отдельно (в этом нет необходимости, да и времени займет слишком много), а просто кратко рассажу на что можно рассчитывать, во время решения тех или иных задач цифровой схемотехники. Тех же, кого интересует конкретные типы микросхем-счетчиков, я могу отправить к своему далеко неполному справочнику по ТТЛ и КМОП микросхемам.

Итак, исходя из полученного в предыдущем разговоре опыта, мы выяснили один из главных параметров счетчика – разрядность. Для того, чтобы счетчик смог считать до 16 (с учетом нуля – это тоже число) нам понадобилось 4 разряда. Добавление каждого последующего разряда будет увеличивать возможности счетчика ровно вдвое. Таким образом, пятиразрядный счетчик сможет считать до 32, шести – до 64. Для вычислительной техники оптимальной разрядностью является разрядность, кратная четырем. Это не есть золотым правилом, но все же большинство счетчиков, дешифраторов, буферов и т.п. строятся четырех (до 16) или восьмиразрядными (до 256).

Но поскольку цифровая схемотехника не ограничивается одними ЭВМ, нередко требуются счетчики с самым различным коэффициентом счета: 3, 10, 12, 6 и т.д. К примеру, для построения схем счетчиков минут нам понадобится счетчик на 60, а его несложно получить, включив последовательно счетчик на 10 и счетчик на 6. Может нам понадобиться и большая разрядность. Для этих случаев, к примеру, в КМОП серии есть готовый 14-ти разрядный счетчик (К564ИЕ16), который состоит из 14-ти D-триггеров, включенных последовательно и каждый выход кроме 2 и 3-го выведен на отдельную ножку. Подавай на вход импульсы, подсчитывай и читай при необходимости показания счетчика в двоичном счислении:

К564ИЕ16

Для облегчения построения счетчиков нужной разрядности некоторые микросхемы могут содержать несколько отдельных счетчиков. Взглянем на К155ИЕ2 – двоично-десятичный счетчик (по-русски – «счетчик до 10, выводящий информацию в двоичном коде»):

Микросхема содержит 4 D- триггера, причем 1 триггер (одноразрядный счетчик – делитель на 2) собран отдельно – имеет свой вход (14) и свой выход (12). Остальные же 3 триггера собраны так, что делят входную частоту на 5. Для них вход – вывод 1, выходы 9, 8,11. Если нам нужен счетчик до 10, то просто соединяем выводы 1 и 12, подаем счетные импульсы на вывод 14 а с выводов12, 9, 8, 11 снимаем двоичный код, который будет увеличиваться до 10, после чего счетчики обнулятся и цикл повторится. Составной счетчик К155ИЕ2 не является исключением. Аналогичный состав имеет и, к примеру, К155ИЕ4 (счетчик до 2+6) или К155ИЕ5 (счетчик до 2+8):

Практически все счетчики имеют входы принудительного сброса в «0», а некоторые и входы установки на максимальное значение. Ну и напоследок я просто обязан сказать, что некоторые счетчики могут считать и туда и обратно! Это так называемые реверсивные счетчики, которые могут переключаться для счета как на увеличение (+1), так и на уменьшение (-1). Так умеет, к примеру, двоично-десятичный реверсивный счетчик К155ИЕ6:

При подаче импульсов на вход +1 счетчик будет считать вперед, импульсы на входе -1 будут уменьшать показания счетчика. Если при увеличении показаний счетчик переполнится (11 импульс), то прежде чем вернуться в ноль, он выдаст на вывод 12 сигнал «перенос», который можно подать на следующий счетчик для наращивания равзрядности. То же назначение и у вывода 13, но на нем импульс появится во время перехода счета через ноль при счете в обратном направлении.

Обратите внимание, что кроме входов сброса микросхема К155ИЕ6 имеет входы записи в нее произвольного числа (выводы 15, 1, 10, 9). Для этого достаточно установить на этих входах любое число 0 — 10 в двоичном счислении и подать импульс записи на вход С.

СЧЁТЧИК НА МИКРОКОНТРОЛЛЕРЕ

Во многих устройствах техники и автоматики всё ещё установлены механические счетчики. Они считают количество посетителей, продукцию на конвейере, витки провода в намоточных станках и так далее. В случае выхода из строя найти такой механический счетчик непросто, а отремонтировать невозможно ввиду отсутствия запчастей. Предлагаю заменить механический счетчик электронным с использованием микроконтроллера PIC16F628A.

Электронный счетчик получается слишком сложным, если строить его на микросхемах серий К176, К561. особенно если необходим реверсивный счет. Но можно построить счетчик всего на одной микросхеме — универсальном микроконтроллере PIC16F628A, имеющем в своем составе разнообразные периферийные устройства и способном решать широкий круг задач.

Вот и недавно меня попросил человек сделать счётчик импульсов на много разрядов. Я отказался от светодиодных индикаторов, так как они занимают много места и потребляют немало энергии. Поэтому реализовал схему на LCD. Счётчик на микроконтроллере может замерять входные импульсы до 15 знаков разрядности. Два первых разряда отделены точкой. EEPROM не использовалась, потому что не было необходимости запоминать состояние счётчика. Так-же имеется функция обратного счёта - реверса. Принципиальная схема простого счетчика на микроконтроллере:

Счетчик собран на двух печатных платах из фольгированного стеклотекстолита. Чертёж приведён на рисунке.

На одной из плат установлены индикатор LCD, на другой — 4 кнопки, контроллер и остальные детали счетчика, за исключением блока питания. Скачать платы и схему счётчика в формате Lay, а так-же прошивку микроконтроллера можно на форуме. Материал предоставил Samopalkin.

Счётчик на микроконтроллере довольно прост для повторения и собран на популярном МК PIC16F628A с выводом индикации на 4 семисегментных светодиодных индикатора. Счётчик имеет два входа управления: «+1» и «-1», а также кнопку «Reset». Управление схемой нового счётчика реализовано таким образом, что как бы долго или коротко не была нажата кнопка входа, счёт продолжится только при её отпускании и очередном нажатии. Максимальное количество поступивших импульсов и соответственно показания АЛС - 9999. При управлении на входе «-1» счёт ведётся в обратном порядке до значения 0000. Показания счётчика сохраняются в памяти контроллера и при отключении питания, что сохранит данные при случайных перебоях питающего напряжения сети.

Принципиальная схема реверсивного счётчика на микроконтроллере PIC16F628A:

Сброс показаний счётчика и одновременно состояния памяти в 0, осуществляется кнопкой «Reset». Следует помнить, что при первом включении реверсивного счётчика на микроконтроллере, на индикаторе АЛС может высветиться непредсказуемая информация. Но при первом же нажатии на любую из кнопок информация нормализируется. Где и как можно использовать эту схему - зависит от конкретных нужд, например установить в магазин или офис для подсчёта посетителей или как индикатор намоточного станка. В общем думаю, что этот счётчик на микроконтроллере кому-нибудь принесёт пользу.

Если у кого-то под рукой не окажется нужного индикатора АЛС, а будет какой-нибудь другой (или даже 4 отдельных одинаковых индикатора), я готов помочь перерисовать печатку и переделать прошивку. В архиве на форуме схема, плата и прошивки под индикаторы с общим анодом и общим катодом. Печатная плата показана на рисунке ниже:

Имеется также новая версия прошивки для счётчика на микроконтроллере PIC16F628A. при этом схема и плата счётчика остались прежними, но поменялось назначение кнопок: кнопка 1 - вход импульсов (например, от геркона), 2 кнопка включает счёт на вычитание входных импульсов, при этом на индикаторе светится самая левая точка, 3 кнопка - сложение импульсов - светится самая правая точка. Кнопка 4 - сброс. В таком варианте схему счётчика на микроконтроллере можно легко применить на намоточном станке. Только перед намоткой или отмоткой витков нужно сначала нажать кнопку "+" или "-". Питается счётчик от стабилизированного источника напряжением 5В и током 50мА. При необходимости можно питать от батареек. Корпус зависит от ваших вкусов и возможностей. Схему предоставил - Samopalkin