Благоустрой... Вредители Выращивание 

Обрабработка фрезерованием. Что это такое фрезеровка, и виды фрезерования Существует разделение по типу станка

Обработка плоских поверхностей в зависимости от расположения относительно поверхности стола станка подразделяется на горизонтальную, вертикальную и наклонную. Она может производится цилиндрическими и торцевыми фрезами соответственно на горизонтально- или вертикально-фрезерных станках.

При обработке плоских поверхностей цилиндрическими фрезами наладка станка начинается с установки фрезы на оправку. Весьма важным является правильное сочетание направления винтовой линии зуба фрезы с направлением вращения шпинделя станка. При определении этого сочетания следует учитывать направление осевой составляющей силы резания Рх, которая в процессе обработки должна быть направлена в сторону шпинделя станка (рис. 6.30).

Заготовка при обработке устанавливается непосредственно на столе или в приспособлении. При установке на столе заготовка должна быть выверена в горизонтальном или вертикальном положении по разметочным рискам или с помощью контрольно-измерительных инструментов. Закрепление заготовки осуществляется только после ее выверки.

Выбор частоты вращения шпинделя и подачи осуществляется по справочным таблицам для определения режимов фрезерования. Установка фрезы на заданную глубину резания осуществляется по лимбу станка, после касания фрезой поверхности заготовки и вывода ее за пределы рабочей зоны.

Обработка плоских поверхностей торцевыми фрезами

Торцевые фрезы по сравнению с цилиндрическими имеют ряд преимуществ: более жесткое крепление, плавная работа большого числа одновременно работающих зубьев, а также большие скорости резания и подачи, особенно для фрез, оснащенных пластинами твердого сплава. Поэтому в большинстве случаев обработку плоских поверхностей целесообразно выполнять торцевыми фрезами.

При обработке торцевыми фрезами точность обработки увеличивается, а шероховатость обработанной поверхности уменьшается с увеличением скорости резания и уменьшением подачи. Установка торцевой фрезы на глубину резания осуществляется так же, как и при установке цилиндрической фрезы.

Обработка пазов и уступов фрезерованием

Уступом называется выемка, ограниченная двумя взаимно-перпендикулярными плоскостями, образующими ступень. На детали может быть один или несколько уступов.

Паз представляет собой выемку, ограниченную плоскими или фасонными поверхностями с трех сторон (рис. 6.31). В зависимости от формы выемки различают пазы прямоугольные (рис. 6.31, а), Т-образные (рис. 6.31, б), типа «ласточкин хвост» (рис. 6.31, в), V-образные (рис. 6.31, г, д) и фасонные. Пазы любой формы могут быть сквозными, открытыми и закрытыми.

Уступы и пазы могут обрабатываться дисковыми и концевыми фрезами, кроме того, обработка уступов может выполняться торцевыми фрезами. Метод обработки уступов и пазов выбирается в зависимости от требований, предъявляемых к точности размеров и геометрической формы обрабатываемых пазов и уступов, а также к шероховатости обработанной поверхности.

Сквозные и открытые, т. е. имеющие выход с одной стороны, пазы обрабатываются дисковыми пазовыми фрезами, которые обеспечивают наиболее точную обработку. Ширина и форма фрезы должна соответствовать ширине и форме паза Дисковые пазовые фрезы имеют режущую кромку только на цилиндрической поверхности, а боковые поверхности фрезы для уменьшения трения имеют поднутрение приблизительно В связи с этим при переточках размер фрезы уменьшается, поэтому во избежание переточек процессе обработки такими фрезами обрабатывают, как правило, пазы небольшой глубины.

Концевыми фрезами уступы и пазы можно обрабатывать на вертикально- и горизонтально-фрезерных станках.

При наладке станка на обработку пазов и уступов дисковыми и концевыми фрезами важно правильно установить инструмент относительно обрабатываемой заготовки. Достаточно просто эта операция осуществляется при использовании установов при обработке заготовки в приспособлении. Положение установа относительно базовых элементов приспособления задается размером Д (рис. 6.32). Установка фрезы, как правило, осуществляется с использованием щупа — металлической пластины, имеющей фиксированный размер (1,3 или 5 мм). Для настройки инструмента по вертикали (рис. 6.32, а) консоль станка осторожно перемещают вверх до тех пор, пока щуп не войдет в зазор между установом и зубьями фрезы плотно и без качки. Запрещается быстрый и резкий подъем консоли, так как это может привести к выкрошиванию зубьев фрезы при ударе о нее установа при резком подъеме или к повреждению щупа. Настройка инструмента по горизонтали (рис. 6.32, б, в) относительно боковой его поверхности осуществляется также с использованием щупа, но стол в этом случае перемещается в поперечном направлении.

При отсутствии установов настройку станка можно выполнять по разметочным рискам или поступить следующим образом: подвести фрезу к боковой поверхности обрабатываемой заготовки до касания, перемещая стол станка в поперечном направлении, и установить лимб маховика поперечной подачи на ноль; затем отвести стол в поперечном направлении так, чтобы фреза вышла за пределы обрабатываемой заготовки, и, наконец, переместить фрезу в поперечном направлении в положение, необходимое для обработки.

Обработку Т-образных пазов и пазов типа «ласточкин хвост» выполняют за несколько переходов. Сначала дисковой фрезой фрезеруют прямоугольный паз (рис. 6.33, а); затем Т-образной фрезой обрабатывают боковые поверхности (рис. 6.33, б); далее угловой фрезой снимают фаски (рис. 6.33, в) и, наконец, калиброванной фрезой обеспечивают получение заданного размера В паза (рис. 6.33, г). Обработка паза типа «ласточкин хвост» проводят за два прохода: сначала концевой или дисковой фрезой выполняют прямоугольный паз, а затем специальной концевой фрезой обрабатывают боковые поверхности паза.

Организация рабочего места на месте фрезерного станка

На рабочем месте фрезеровщика (рис. 6.34) размещены фрезерный станок 1 и шкаф 8 с инструментами и принадлежностями к станку. Пульт 9 служит для вызова мастера или механика (применяется только в условиях заводского производства, при использовании станка в учебных мастерских отсутствует). Справа от станка расположен контейнер 7 (контейнеры) для заготовок, подлежащих обработке, и обработанных деталей. Обтирочная ветошь хранится в ящике 5, а отработанная стружка помещается в ящик б. Около станка находится деревянная подставка 4. В шкафу 3 размещаются приспособления, а на стеллаже 2 — оправки для закрепления фрез.

При работе на фрезерном станке следует соблюдать перечисленные ниже правила.

Перед началом работы необходимо:

Проверить исправность станка;

Проверить исправность заземления и наличие ограждения рабочей зоны;

Последовательно проконтролировать работоспособность всех механизмов станка, системы охлаждения и смазки;

Произвести смазку узлов станка, заполнив масленки до указанного уровня;

Изучить технологическую документацию, а также проверить наличие и исправность соответствующей оснастки;

Закрепить на станке приспособления и режущий инструмент;

Установить согласно технологической карте частоту вращения шпинделя и минутную подачу;

Удалить с рабочего места все посторонние предметы;

Убедиться в правильности наладки станка.

Во время работы необходимо:

Строго соблюдать настройку станка на заданный режим;

Работать только исправным и хорошо заточенным инструментом;

Детали, инструменты и приспособления класть только на свои места и использовать только по прямому назначению;

Следить за тем, чтобы режущий и измерительный инструмент, ключи, заготовки и обработанные детали не находились на рабочих поверхностях стола;

Следить за прочностью крепления обрабатываемых заготовок, инструмента и приспособлений;

В промышленности широко применяются одношпиндельные фрезерные станки - горизонтальные, вертикальные и универсальнофрезерные горизонтальные. Имеются, кроме того, специализированные и специальные фрезерные станки. К специализированным фрезерным станкам относятся многошпиндельные продольно-фрезерные с расположением шпинделей в различных плоскостях; торцово-фрезерные для обработки плоскостей, карусельно-фрезерные с вращающимися столами; барабанно-фрезерные с вращающимся барабаном и копировально-фрезерные для обработки фасонных поверхностей. К специальным станкам относятся резьбофрезерные, шпоночно-фрезерные, агрегатно-фрезерные и реечные.

В одношпиндельном горизонтально-фрезерном станке шпиндель расположен горизонтально; в вертикально-фрезерном станке - вертикально; в остальном устройство станка принципиально не отличается от горизонтально-фрезерного. Вертикально-фрезерные станки снабжают как прямоугольными, так и круглыми столами.

Универсально-фрезерные станки отличаются от описанных тем, что они имеют поворотный стол, который позволяет выполнять операции по фрезерованию винтовых канавок (например, у спиральных сверл) и зубчатых колес с винтовыми зубьями.

Продольно-фрезерный станок является характерным для группы специализированных фрезерных станков. Такие станки изготовляют с одним или несколькими вертикальными и горизонтальными шпинделями; в последнем случае заготовку можно обрабатывать одновременно с нескольких сторон. На рис. 175, а показан общий вид четырехшпиндельного продольно-фрезерного станка. По направляющим станины 1 может перемещаться стол 2, на котором закрепляют заготовки. Обработку выполняют фрезами, установленными в шпинделях, находящихся в шпиндельных бабках 3, 5, 6 и 7. Так как стол неподвижен, то чтобы получить требуемые размеры при обработке, инструмент устанавливают выдвижением шпинделей вдоль их оси и перемещением шпиндельных бабок 5 и 6 по направляющим поперечины 4 перпендикулярно осям шпинделей этих бабок.

Барабанно-фрезерные станки относятся к группе непрерывно действующих станков. Они имеют преимущественное распространение в крупносерийном и массовом производстве. На таких станках может производиться одновременная обработка двух плоскостей заготовок. На рис. 175, б приведена схема станка. На валу 5, проходящем через раму станины, смонтирован барабан 3, имеющий форму правильного четырехугольника (а иногда пяти- и шестиугольника), на гранях которого установлены приспособления 6 для закрепления детали. Вал вместе с барабаном 3 вращается от отдельного привода 4. Частота вращения барабана может регулироваться коробкой подач, помещенной в корпусе станины.

На двух стойках 1 размещены фрезерные головки 2, которые представляют собой самостоятельные узлы с индивидуальными приводами. Фрезерные головки могут перемещаться на стойках и закрепляться в любом положении согласно настройке станка. Для регулирования глубины фрезерования шпиндели кроме вращательного движения имеют поступательное движение по направлению оси вращения. Производительность станка зависит от количества одновременно обрабатываемых заготовок и частоты вращения барабана.

На фрезерных станках плоские поверхности можно обрабатывать цилиндрическими фрезами при движении стола станка с закрепленной заготовкой навстречу направлению движения зубьев, т. е. методом встречного фрезерования (рис. 176, а) или в том же направлении методом попутного фрезерования (рис. 176, б). В обоих случаях стружка, снимаемая каждым зубом фрезы, имеет форму запятой, но в первом случае толщина стружки постепенно увеличивается в процессе резания, а во втором уменьшается.

Преимущество встречного фрезерования заключается в плавном увеличении нагрузки на зуб и во врезании зубьев в металл под коркой. Недостатком этого метода является стремление фрезы оторвать заготовку от поверхности стола.

Точность фрезерования зависит от типа станка, инструмента, режимов резания и других факторов. При фрезеровании может быть достигнута точность по 8…11-му квалитетам, а при скоростном и тонком фрезеровании - до 7-го квалитета. Шероховатость поверхности при чистовом фрезеровании Rа=6,3…1,6 мкм.

На рис. 177 приведены различные виды обработки на фрезерных станках: α - обработка плоскости цилиндрической фрезой; б - обработка плоскости торцевой фрезой; в, г - обработка вертикальной плоскости и паза дисковой трехсторонней фрезой; д - обработка паза концевой фрезой; е - обработка боковых плоскостей двумя торцевыми фрезами; ж - обработка сложного профиля набором фрез.

Фрезерные станки . Основное назначение фрезерного станка (фрезера) - производить плоское и фасонное (профильное) строгание кромок деталей и оправку (обгон) по периметру щитов, рамок, коробок.
Основные части фрезерного станка: станина, рабочий стол, супорт, вал-шпиндель, вставной шпиндель, режущий инструмент.
Супорт расположен под рабочим столом; он несет на себе важнейшую часть станка - вал-шпиндель. Через отверстие в столе вал-шпиндель выходит верхним концом на рабочую поверхность стола. При ременной передаче его средняя часть служит рабочим шкивом. Супорт с валом-шпинделем можно поднимать, опускать и закреплять в требуемом положении стопорным винтом. Вал-шпиндель приводится во вращение непосредственно от вала электродвигателя или через ременный привод.
В верхний конец вала-шпинделя вставляется рабочий (вставной) шпиндель, на который насаживается режущий инструмент. Верхняя часть вставного шпинделя входит в шарикоподшипник, укрепленный на кронштейне. Благодаря этому шпиндель и режущий инструмент не испытывают вибраций при высоком их расположении или при больших рабочих нагрузках.
При фрезеровании прямолинейных деталей на рабочем столе устанавливается направляющая линейка. Она состоит из двух частей, соединенных литой скобой, огибающей режущий инструмент. Части линейки можно раздвигать в зависимости от размеров режущего инструмента и устанавливать перпендикулярно к столу либо в одной плоскости, когда фрезерование профильное или когда оно производится не на всю толщину детали, либо в разных плоскостях, как плиты фуговального станка, если фрезерование представляет собой плоское строгание.
На линейке часто укрепляют верхние прижимы для обрабатываемых деталей. Сама линейка крепится винтами, проходящими через прорези в рабочем столе. На рабочем столе для установки и крепления упоров имеются два параллельных продольных паза поперечного сечения, в форме ласточкина хвоста. При сквозном (во всю длину) фрезеровании деталей применяются прижимы. Верхние прижимы обычно крепят к направляющей линейке, боковые устанавливают на рабочем столе.
Верхний и боковой прижимы к фрезерному станку можно устроить так, чтобы они одновременно выполняли роль ограждений. Лучшими нужно признать роликовые прижимы, так как они облегчают подачу обрабатываемого материала. Гребенки и пружины, наоборот, несколько затрудняют подачу вследствие трения. До сего времени большинство фрезерных станков имеет ручную подачу. Станки новейшей конструкции оборудованы механизмами автоматической подачи.
Режущий инструмент для фрезерных станков. На фрезерных станках в качестве режущего инструмента применяют патроны со вставленными в них плоскими ножами, фрезерные головки, цельные и составные фрезы, двухрезцовые фрезы-крючья, прорезные диски, пилы.
Плоские ножи, односторонние и двусторонние, имеют прямолинейные режущие кромки для плоского фрезерования или криволинейные для выборки несложного и неглубокого профиля. Толщина ножей 8-10 мм. Нож вставляется в прорезь рабочего шпинделя и крепится торцевым болтом. Крепление плоских односторонних ножей может производиться в патроне, представляющем собой две зажимные шайбы с канавками, в которые ножи вставляются боковыми кромками. Шайбы стягиваются на шпинделе гайкой. Крепление плоских односторонних ножей в зажимных шайбах более надежно. Вылет ножей при ослаблении гайки предупреждается штифтами в канавках верхней шайбы, входящими в соответствующие вырезы на боковых кромках ножей.
Ножи можно крепитыи в фрезерных головках - ножевых валах уменьшенной длины, имеющих в центре отверстие для рабочего шпинделя. Фрезерную головку, насаженную на шпиндель, затягивают гайкой.
Цельная фреза (шарошка) представляет собой многорезцовый инструмент, изготовленный из одного куска стали. Различают цельные фрезы цилиндрические с прямым и косым зубом, прорезные, пазовые, фасонные.
Цельные фрезы имеют ряд преимуществ: а) наличие значительного количества резцов - у фасонных фрез не менее четырех, у цилиндрических до десяти; б) выбалансирование фрез при их изготовлении; в) сохранение резцами при правильной их заточке постоянного профиля; г) относительная безопасность в работе благодаря отсутствию вставных ножей; д) быстрая установка на шпинделе.
Диаметр цельных фрез от 80 до 120 мм. Составные фрезы собирают из нескольких цельных фрез, соединяя их в общую фрезерную головку. Составные фрезы применяют для обработки широких, глубоких или очень сложных профилей. Двухрезцовые фрезы-крючья предназначены преимущественно для выработки шипов и проушин. Они рассчитаны на ширину фрезерования в 4, 6, 8, 10 и 12 мм. Диаметр окружности вращения режущих кромок -140, 160 и 180 мм. Широкое применение получили фрезы-крючья из стальных пластин шириной 80 мм.
Прорезные диски, служат преимущественно для выборки проушин шириной 8, 9, 10, 12, 14, 16 и 18 мм. Диски обычно имеют три резца, но в настоящее время выпускаются диски и с большим количеством резцов. Диаметр дисков 250, 300 и 350 мм.
Угол заострения вставных фрезерных ножей 40°, резцов цельных фрез 50-60°; угол резания 60-70°. На фрезерных станках в качестве, режущего инструмента применяют также небольшие мелкозубые круглые пилы.
Гайку для закрепления режущего инструмента на шпинделе фрезерного станка затягивают ключом до отказа. Применение всякого рода рычагов и «сцепленных» ключей не допускается. Резьба шпинделя должна выступать над гайкой не менее чем на 1 мм.
Для точной установки режущего инструмента по высоте на шпиндель надевают кольца-подкладки. Если устанавливается несколько инструментов на определенном расстоянии друг от друга, то применяют кольца-прокладки.
Цилиндрические фрезы неизменяемого профиля. Недостаток большинства режущих инструментов для фрезерных станков заключается в том, что после продолжительной работы и неоднократной заточки уменьшается радиус и изменяется профиль режущей кромки. Нож или фреза становятся непригодными к работе.

РАБОТА НА ФРЕЗЕРНЫХ СТАНКАХ

Фрезерование прямолинейных кромок . Прямолинейные кромки фрезеруют: а) для выверки их под линейку; б) для отборки профиля во всю длину детали (сквозное фрезерование); в) для отборки профиля на части длины детали (несквозное фрезерование).
Во всех трех случаях фрезерование ведется по направляющей линейке. При обработке более или менее длинных деталей к половинкам линейки прикрепляют деревянные бруски. Для выверки кромки детали под линейку выходную половину линейки (вторую от станочника) устанавливают в одной плоскости с режущими кромками резцов, а переднюю половину отодвигают или, как говорят, утапливают от линии резания на толщину стружки. Часто делают иначе: укрепляют на половинках линейки бруски, у которых разница в толщине равна толщине стружки. Работу ведут так же, как на фуговальном станке.
В случае профильного фрезерования, когда часть ширины обрабатываемой кромки не фрезеруется, обе половинки направляющей линейки устанавливают в одной плоскости и тогда режущие кромки фасонных ножей или фрез выступают за линейку на глубину фрезерования. В этом случае очень удобно прикрепить к линейке один сплошной брусок с прорезью для режущей части инструмента.
Работа ведется так же, как и при фрезеровании под линейку. При несквозном фрезеровании деталь в несколько наклонном к линейке положении упирают торцем в упор перед резцами, затем ее прижимают к направляющей линейке. В таком положении деталь надвигают на резцы до противоположного упора.
При прямолинейном фрезеровании, особенно при фрезеровании узких деталей - штабиков, раскладок и т. п., обязательно нужно, пользоваться верхними и боковыми прижимными приспособлениями. Если таких приспособлений нет, прикрепляют отфугованный брусок строго параллельно направляющей линейке на расстоянии от нее, равном ширине обрабатываемых деталей, и между бруском и линейкой проталкивают детали под фрезу. В большинстве случаев прикрепляют сверху второй брусок, который одновременно служит прижимом для обрабатываемых деталей и предохранительным устройством, обеспечивающим безопасность работы.
Фрезерование криволинейных кромок . Фрезерование внешних криволинейных кромок производится на шаблоне по упорному кольцу, надетому на рабочий шпиндель под фрезой. Для уменьшения трения в качестве упорного кольца часто применяют шарикоподшипник.
Шаблон для фрезерования одной криволинейной кромки детали (например кронштейна для полочки) состоит из щита толщиной 25-50 мм, кромка которого обработана соответственно кривизне предназначенной к обработке детали. На шаблоне устроены по размерам детали продольный и торцевые упоры и один или несколько зажимов. Лучшими зажимами по быстроте действия считаются эксцентриковые. Для того чтобы эксцентрики не оставили вмятин на поверхности обрабатываемой детали, под ними подвешены на пружинах деревянные подкладки. Рабочая кромка шаблона и рабочая поверхность эксцентрика в целях предохранения от быстрого износа часто обтягивают белой жестью. Заготовку, опиленную на ленточной пиле по кривым кромкам с припуском на фрезерование, укладывают и зажимают на шаблоне и вместе с ним подают на вращающуюся фрезу. Кромка шаблона в течение всего времени подачи должна быть прижата к упорному кольцу. Резцы фрезы будут обрабатывать кромку детали соответственно кривизне кромки шаблона.
Описанным способом выполняется как гладкая, так и профильная обработка. Фрезеруемая кромка может иметь любую кривизну, но с радиусом закруглений не менее радиуса упорного кольца.
Оправка (обгон) по периметру щитов и рамок производится также на шаблоне по упорному кольцу. Применяемые шаблоны изготовляются в виде точно обработанных в размер щитов. К шаблону щит или рамку прикрепляют (накалывают) посредством шпилек-наколок. При этом располагают щит или рамку на столе станка под шаблоном. Упорное кольцо надевают над фрезой.
Обрабатываемый щит или рамку накалывают внутренней стороной, так как от наколок остакжя следы. Менее заметные следы оставляют наколки плоские, овальные или ромбические, если их правильно расположить относительно волокон в щите или рамке; более заметные следы оставляют наколки круглые и квадратные.
При работе на фрезерных станках необходимо особенно строго соблюдать правила техники безопасности, так как режущий инструмент полностью оградить не удается, а фрезерование ведется при большом числе оборотов. Станочник обязан следить, чтобы установка супорта была точной и надежной, верхняя часть шпинделя во время работы не вибрировала и резцы не били, ограждения опасных мест были исправны. Он должен проверять крепление вставного шпинделя, установку и крепление режущего инструмента, подтягивать болты и гайки. Работать можно только исправным, выбалансированным, хорошо отточенным режущим инструментом, не имеющим трещин, зазубрин, зажогов.
Приспособления к фрезерным станкам для механизации подачи, станки с подающим механизмом . Станкостроительная промышленность в настоящее время выпускает приспособления для механизации подачи на фрезерных станках старых конструкций; новые фрезерные станки выпускаются с постоянным механизмом подачи. Довольно широкое применение имеют следующие приспособления.
Звездочка надевается на рабочий шпиндель вместо упорного кольца или само кольцо вырабатывается в виде звездочки. Во время работы станка звездочка или звездчатое кольцо от специального механизма вращается с небольшим числом оборотов в сторону, обратную вращению шпинделя. При этом она взаимодействует с шаблоном, применяемым для фрезерования. В рабочей кромке шаблона, покрытой листовой сталью, устраиваются гнезда, размерами и расположением соответствующие зубьям звездочки и их шагу. Зубьями звездочки шаблон, прижатый к упорному кольцу, автоматически передвигается навстречу резцам вращающейся фрезы.
Скорость подачи звездочкой может быть от 5 до 15 м/мин в зависимости от породы древесины, глубины и ширины фрезерования, а также от числа оборотов звездочки.
Двухвальцевое приспособление: работает так же, как подающие вальцы других станков. Обычно применяют две пары вальцев, располагая их по обеим сторонам фрезы.
Одновальцевое приспособление с горизонтальным расположением вальца над рабочим столом: кроме подачи прямолинейных деталей на фрезу, прижимает детали к рабочему столу в дополнение к верхним прижимным устройствам. Вальцевые приспособления служат для подачи прямолинейных деталей; работают они от индивидуальных электродвигателей мощностью 0,5 квт. Скорость подачи до 25 м/мин. Поверхность вальцев покрыта резиной. Гусенично-конвейерное приспособление с пружинящими упорами устанавливают над обрабатываемыми деталями или сбоку. Наряду с подачей это приспособление производит прижим деталей к столу или к направляющей линейке. Работает оно от индивидуального электродвигателя.
Станки с механической подачей . Станкостроительная промышленность выпускает фрезерные станки с механической подачей обрабатываемых деталей посредством карусельного стола. Карусельно-фрезерный одношпиндельный станок ФКА снабжен круглым рабочим столом, вращающимся от индивидуального электродвигателя.
Стол оборудован пневматическими прижимами. На станке можно обрабатывать одну или несколько деталей разной формы. Шаблоны с деталями закрепляют на столе станка по его окружности. Шпиндель под действием подвешенного через блок груза или силой пружины прижимается упорным кольцом к рабочей кромке шаблона. Как только упорное кольцо приходит в соприкосновение с шаблоном, автоматически включается электродвигатель вращения стола и начинается обработка детали; с отводом кольца электродвигатель автоматически выключается.
Скорость вращения стола в процессе обработки детали можно уменьшать. К этому прибегают при фрезеровании углов с целью предупреждения сколов. Шпиндель делает 6000 об/мин, мощность его электродвигателя 4,2 квт; мощность электродвигателя вращения стола 1,2 квт. Диаметр стола 1000 мм.
Станок ФКА обладает высокой производительностью. Работа фрезеровщика сводится только к уборке обработанных деталей и закладке в шаблоны новых. Это выполняется на ходу станка.
Двухшпиндельный карусельно-фрезерный станок Ф2КА отличается от одношпиндельного более совершенной конструкцией, большей мощностью и более высокой производительностью. У него один шпиндель производит предварительную, более грубую обработку, второй - окончательную, чистую. Оба шпинделя надвигаются на обрабатываемые детали супортами, выступающими из пневматических цилиндров.
Станина станка состоит из двух соединенных между собой частей, опирающихся на общую фундаментную плиту. На одной части станины смонтирован стол, на второй - рабочая часть станка и электродвигатель стола. Здесь же располагается баллон со сжатым воздухом, если воздух не подается к станку от общезаводского воздухопровода.
Диаметр стола 2000 мм, окружная скорость вращения стола до 20 м/мин. Число оборотов каждого шпинделя 6000 в минуту. Мощность электродвигателя каждого рабочего шпинделя 8 квт, электродвигателя стола 2,5 квт.

ИСПОЛЬЗОВАНИЕ ФРЕЗЕРНЫХ СТАНКОВ ДЛЯ ВЫПОЛНЕНИЯ РАЗНЫХ СТОЛЯРНЫХ РАБОТ

В столярном производстве фрезерный станок считается универсальным. Помимо фрезерования по линейке и упорному кольцу, на нем можно вырабатывать рамные шипы - одинарные в двойные, ящичные шипы - прямые и в форме ласточкина хвоста; выбирать проушины и гнезда, а также пазы - прямые и в «ласточкин хвост»; обстрагивать ящики в размер по длине и ширине; опиливать ящики по высоте. При обработке брусков можно заменить фрезерным станком фуговальный и рейсмусовый станки. Временные мастерские на строительствах и предприятиях с небольшим объемом производства обязательно имеют фрезерный станок.
Большая часть специальных работ на фрезерном станке выполняется с помощью различных приспособлений. Приспособления для выработки рамных шипов. Каретка с продольным и торцевым упорами и верхним прижимом для выработки шипов и проушин у коротких брусков. Каретку с уложенными на ней брусками перемещают по пазам в столе или по укрепленным на столе направляющим. Для прижима материала лучше всего использовать рычажное устройство. На шпиндель надевают прорезной диск для шипов и проушин. Приемы работы такие же, как на торцовочном станке.
Каретка для выработки шипов у длинных брусков. Ее устройство такое же, как у каретки шипореза ШО-6. Пристраивают каретку подвижно к боковой кромке рабочего стола фрезера. Приемы работы, как на станке ШО-6.
Деревянная каретка, укрепляемая двумя петлями на стене или на специальной стойке. Ее можно изготовить своими силами непосредственно на строительстве. Каретка для выработки скошенных шипов (например, у боковых царг стула). Устройство ее такое же, как у каретки для выработки прямых шипов, с тем лишь изменением, что на салазках для подачи укрепляется клиновидная подставка, наклоненная к резцам под углом скоса шипа. Для выработки шипов со скосом в обратную сторону направляют салазки другим концом или перевертывают клиновидную подставку.
В настоящее время промышленность выпускает одношпиндельный фрезерный станок ФШ-3, специально приспособленный для выработки рамных шипов. Станок оборудован шипорезной кареткой с быстродействующим зажимом. При наличии этого фрезера предприятия с небольшим объемом производства могут вполне обходиться без шипорезного станка.
Приспособления для выработки ящичных шипов. Цулага-ящик для выработки прямых ящичных шипов. Обрабатываемые щитки (стенки ящиков) укладывают в цулагу на ребро, зажимают эксцентриком или клином и подают на резцы по направляющей линейке станка, по специально устанавливаемой направляющей планке или по упорному кольцу. На шпиндель надевают через прокладки прорезные диски или фрезы-крючья. Каретка с винтовым, эксцентриковым или пневматическим зажимом для подачи щитков под фрезы. Щитки укладывают так же, как в ящике-цулаге. Каретку передвигают по салазкам, укрепленным на рабочем столе.
Для подачи щитков шириной до 150 мм пачками толщиной до 200 мм промышленность выпускает съемную каретку с рычагом для ее перемещения и быстродействующим эксцентриковым зажимом. Вес каретки 20 кг.
Приспособление для выработки сквозных и полупотайных шипов «ласточкин хвост». На этом приспособлении, выпускаемом промышленностью, производится одновременная выработка шипов у двух щитов шириной до 400 мм и толщиной до 25 мм, зажатых во взаимно перпендикулярном положении с лицевыми сторонами, обращенными внутрь образуемого прямого угла. Шипы зарезаются попарно. Режущим инструментом служит фреза, работающая боковыми кромками и зубчиками на торце. Такие фрезы часто называют торцевыми или цинк-фрезами. Приспособление съемное, весит 8 кг.
Приспособления для выполнения на фрезерном станке различных других работ. Шаблон для выработки штабиков и раскладки с одновременным откраиванием их от доски. Эта работа производится наборной фрезой из профильной фрезы и пилы. Доска подается по направляющей линейке на шаблоне с боковым роликовым прижимом. Прижимной ролик имеет по окружности гребень, которым входит в пропил, препятствуя смещению доски по вертикали.
Приспособление для выборки шпунта и обработки гребня без переналадки станка. Приспособление, имеющее вид коробки с горизонтальной продольной перегородкой, укрепляют на рабочем столе плашмя, т. е. широкой стороной. В коробке устроена сквозная круглая прорезь, через которую проходит шпиндель с фрезами. Боковым упором для обрабатываемых деталей служит вертикальная внешняя стенка коробки. В обоих отделениях коробки имеются верхние прижимы в виде гребешков - деревянные или металлические.
На шпинделе внизу крепится фреза для выборки шпунта, а вверху - фреза для выработки гребня. Деталь (делянка), пропущенная через нижнее отделение приспособления, выходит из нее со шпунтом на кромке.
Перевернув деталь второй кромкой к шпинделю, пропускают ее через второе отделение приспособления. Оттуда деталь выходит с гребнем на второй кромке.
Приспособление для обгона по периметру плинтусной коробки и колпака шкафа с закруглением углов представляет собой четырехугольный щит с закругленными углами и четырьмя упорными колодками в углах. Щит должен быть точно обработан. Насадив обрабатываемый комбинат на упорные колодки и скрепив его со щитом зажимами или наколками, производят обгон с закруглением углов по упорному кольцу.
Приспособление для обрезки ящиков по высоте. Приспособление сделано в виде рамы, на которую надевают обрабатываемый ящик. Скрепив ящик с рамой эксцентриковым зажимом, подают его на пилы по направляющей линейке. Ящик обрезается одновременно сверху и снизу двумя насаженными на шпиндель пилами.
Выше описаны только приспособления, имеющие повсеместное применение. Приспособлений к фрезерному станку, разнообразных по устройству и назначению, очень много.

Популярные статьи



Базированием называется придание детали определенного положения относительно режущего инструмента при ее механической обработке на станках. Оно осуществляется путем доведения базовых поверхностей детали до соприкосновения с установочными элементами приспособления. При этом, если установочная и исходная базы детали не совпадают, неизбежно возникает погрешность базирования, величина которой определяется предельными отклонениями исходной базы относительно режущего инструмента. О погрешности базирования можно говорить только при обработке способом автоматического получения заданного размера, когда для всей партии обрабатываемых деталей настройка режущего инструмента постоянна. И, наоборот, при обработке способом пробных проходов при любом расположении установочной и исходной баз погрешность базирования отсутствует, так как для каждой обрабатываемой детали расположение режущего инструмента корректируется по исходной базе.

Погрешность выдерживаемого размера обрабатываемой детали DИ можно представить как сумму погрешности базирования - D баз и всех прочих погрешностей, связанных с процессом обработки - w.

Откуда, допускаемое значение погрешностей базирования

(3.2)

Следовательно, обеспечение требуемой точности размера возможно при соблюдении условия

где - фактическое значение погрешности базирования.

При обратном соотношении этих величин, во избежание брака, необходимо уменьшить значение , для чего необходимо:

Или изменить схему базирования;

Или ужесточить допуски на базисные размеры;

Или расширить поле допуска выдерживаемого размера (если это не нарушает правильность функционирования детали).

Величина рассчитывается аналитически и представляется виде полного дифференциала уравнения размерной цепи, в котором приращение вектора, связывающего исходную базу детали с установочной базой приспособления, выражена через соответствующего приращения базисных размеров.

Объясним суть метода на примере.

Предположим у детали цилиндрической формы требуется профрезеровать уступ, выдержав размер И (см. рис.3.1).

1. При установке на плоскости (схематически показанной на рис. 3.2), погрешность базирования будет равна нулю, т.к. исходная база у всех заготовок занимает одно и то же положение и совпадает с установочной.


Рис. 3.2 Рис. 3.3

Исходя из равенства И=Н (с учетом, что Н = const, DН = 0), можем написать, что

(3.5)

2. Оставив все прочие условия постоянными, вместо приспособления, показанного на рис 3.2, примем для установки деталей призму, схематически показанную на рис 3.3.

При данной установке, где исходная и установочная базы не совпадают, будем иметь погрешность базирования, что зависит от погрешности заданного размера DD . При этом исходный размер выражается в соответствии с рис 3.3:

. (3.6)

Подставляя значение О / К (что определяется из DОО / m ) в выражении (3.6), получим

. (3.7)

Откуда погрешность базирования (с учетом, что DН= 0) будет равна

(3.8)

Итак, при этом, погрешность базирования имеет место и обратно пропорциональна величине погрешности заданного размера - DD=d D .

Работа выполняется на вертикально фрезерном станке.

Режущий инструмент – фреза концевая с цилиндрическим хвостовиком, диаметром D =25мм.

Заготовка – валики, в количестве 5 штук с диаметром Æ20 -0,36 мм, длиной L= 100мм, (желательно брать партию заготовок с большим полем рассеивания).

Работу следует выполнять в следующей последовательности:

1) Ознакомиться с рабочим чертежом заготовки (рис 3.1.) и схемами установки (рис 3.2 и 3.3)

2) Установить заготовку по первой схеме и по заданной настройке, обработать партию деталей с одного конца. Величина исходного размера и режимы резания задаются руководителем занятий.

3) Установить детали по второй схеме см. рис. 3.3) и профрезеровать уступ с другой стороны. Во избежание путаницы, на торцевых поверхностях наносить знаки кернером.