Благоустрой... Вредители Выращивание 

Как посчитать сопротивление петли фаза ноль. Сопротивление цепи фаза – ноль. Физическое понятие петли фаза-ноль

Современный человек привык к тому, что электричество постоянно служит для удовлетворения его запросов и выполняет большую, полезную работу. Довольно часто сборку электрических схем, подключение электроприборов, электромонтаж внутри частного дома выполняют не только обученные электрики, но и домашние мастера или нанятые гастарбайтеры.

Однако, всем известно, что электричество опасно, может травмировать и поэтому требует качества выполнения всех технологических операций для надежного прохождения токов в рабочей схеме и обеспечения их высокой изоляции от окружающей среды.

Сразу же возникает вопрос: как проверить эту надежность после того, как работа вроде бы выполнена, а внутренний голос терзают сомнения по вопросу ее качества?

Ответ на него позволяет дать метод электрических измерений и анализа, основанный на создании повышенной нагрузки, который на языке электриков называют измерением сопротивления петли фаза-ноль.

Принцип формирования цепочки для проверки схемы

Кратко представим себе путь, который проходит электроэнергия от источника — питающей трансформаторной подстанции до розетки в квартире типового многоэтажного дома.

Обратим внимание, что в старых зданиях, оборудованных по , еще может быть не закончен переход на схему TN-C-S. В этом случае расщепление PEN проводника в распределительном электрическом щитке дома не будет выполнено. Поэтому розетки подключены только фазным проводом L и рабочим нулем N без защитного РЕ-проводника.

Глядя на картинку можно понять, что длина кабельных линий от обмоток трансформаторной подстанции до конечной розетки состоит из нескольких участков и может в среднем иметь протяженность в сотни метров. В приведенном примере участвуют три кабеля, два распределительных щита с коммутационными аппаратами и несколько мест подключения. На практике же, имеется значительно большее количество соединительных элементов.

Такой участок имеет определенное электрическое сопротивление и вызывает потери и падение напряжения даже при правильном и надежном монтаже. Это значение регламентировано техническими нормативами и определяется при составлении проекта производства работ.

Любые нарушения правил сборки электрических схем вызывают его увеличение и создают несбалансированный режим работы, а в отдельных ситуациях и аварии в системе. По этой причине участок от обмотки трансформаторной подстанции вплоть до розетки в квартире подвергают электрическим измерениям и анализируют полученные результаты для корректировки технического состояния.

Вся протяженность смонтированной цепочки от розетки до обмотки трансформатора напоминает обыкновенную петлю, а поскольку она образована двумя токопроводящими магистралями фазы и нуля, то так и называется - петля фазы и нуля.

Более наглядное представление о ее формировании дает следующая упрощенная картинка, в которой более детально показан один из способов прокладки проводов внутри квартиры и прохождение токов по ней.

Здесь для примера показан включенный автоматический выключатель АВ, расположенный внутри электрического квартирного щитка, контакты распределительной коробки, к которым подсоединяются провода кабеля и нагрузка в виде лампочки накаливания. Через все эти элементы протекает ток в обычном режиме эксплуатации.

Принципы измерения сопротивления петли фаза-ноль

Как видим, к розетке по проводам подводится напряжение от понижающей обмотки трансформаторной подстанции, создающей протекание тока через лампочку, подключенную в розетку. При этом какая-то часть напряжения теряется на сопротивлении проводов подводящей магистрали.

Соотношения между сопротивлением, током и падением напряжения на участке цепи описывает знаменитый закон Ома.

Только надо учесть, что у нас не постоянный ток, а переменный синусоидальный, который характеризуется векторными величинами и описывается комплексными выражениями. На его полную величину влияет не одна активная составляющая сопротивления, а и реактивная, включающая индуктивную и емкостную части.

Эти закономерности описываются треугольником сопротивлений.

Электродвижущая сила, вырабатываемая на обмотке трансформатора, создает ток, который образует падение напряжения на лампочке и проводах схемы. При этом преодолеваются следующие виды сопротивлений:

    активное у нити накала, проводов, контактных соединений;

    индуктивное от встроенных обмоток;

    емкостное отдельных элементов.

Основную долю полного сопротивления составляет активная часть. Поэтому во время монтажа схемы для приближенной оценки допускают его замер от источников постоянного напряжения.

Полное же сопротивление S участка петли фаза-ноль с учетом нагрузки определяют следующим образом. Вначале узнают величину ЭДС, создаваемую на обмотке трансформатора. Ее значение точно покажет вольтметр V1.

Однако, доступ к этому месту обычно ограничен, а выполнить такой замер невозможно. Поэтому делается упрощение — вольтметр вставляется в контакты гнезда розетки без нагрузки и фиксируется показание напряжения. Затем:

    фиксируются показания приборов;

    выполняется расчет.

Выбирая нагрузку необходимо обратить внимание на ее:

    стабильность во время проведения замеров;

    возможность выработки тока в схеме порядка 10÷20 ампер, ибо при меньших значениях дефекты монтажа могут не проявиться.

Величину полного сопротивления петли с учетом подключенной нагрузки получают делением величины Е, замеренной вольтметром V1, на ток I, определенный амперметром А.

Z1 = Е/ I = U1/I

Полное сопротивление нагрузки вычисляется делением падения напряжения ее участка U2 на ток I.

Теперь остается только исключить сопротивление нагрузки Z2 из рассчитанной величины Z1. Получится полное сопротивление петли фаза-ноль Zп. Zп=Z2-Z1.

Технологические особенности замера

Любительскими измерительными приборами точно определить значение сопротивления петли практически невозможно из-за больших величин их погрешности. Работу надо выполнять амперметрами и вольтметрами повышенного класса точности 0,2, а они, как правило, используются только в электротехнических лабораториях. К тому же требуют умелого обращения и частых сроков проведения поверок в метрологической службе.

По этой причине замер лучше доверить специалистам лаборатории. Однако, они, скорее всего, будут использовать не единичные амперметр и вольтметр, а специально созданные для этого высокоточные измерители сопротивления петли фаза-ноль.

Рассмотрим их устройство на примере прибора, названного измерителем тока короткого замыкания типа 1824LP. Насколько корректен этот термин судить не будем. Скорее всего он использован маркетологами для привлечения покупателей в рекламных целях. Ведь этот девайс не способен измерять токи коротких замыканий. Он только помогает их рассчитывать после замеров при нормальном режиме эксплуатации сети.

Измерительный прибор поставляется вместе с проводами и наконечниками, уложенными внутрь чехла. На его лицевой панели расположена одна кнопка управления и дисплей.

Внутри полностью реализована электрическая схема замера, исключающая лишние манипуляции пользователя. Для этого он снабжен нагрузочным сопротивлением R и измерителями напряжения и тока, подключаемого нажатием кнопки.

Элементы питания, внутренней платы и гнезда для подключения соединительных проводов показаны на фотографии.

Подобные приборы подключаются щупами проводов к розетке и работают в автоматическом режиме. Часть из них обладает оперативной памятью, в которую заносятся результаты измерений. Их можно последовательно просмотреть через какое-то время.

Технология замера сопротивления автоматическими измерителями

На подготовленном для работы приборе устанавливают соединительные концы в гнезда и с обратной стороны подключают их к контактам розетки. Измеритель сразу автоматически определяет величину напряжения и выводит ее на дисплей в цифровом виде. В приведенном примере она составляет 229,8 вольта. После этого нажимают на кнопку переключения режимов.

Прибор замыкает внутренний контакт для подключения сопротивления нагрузки, создающего ток более 10 ампер в сети. После этого происходит замер тока и расчеты. Величина полного сопротивления петли фаза-ноль выводится на дисплей. На фотографии она равна 0,61 Ома.

Отдельные измерители во время работы используют алгоритм расчета тока короткого замыкания и дополнительно выводят его на дисплей.

Места выполнения замеров

Показанный двумя предыдущими фотографиями метод определения сопротивления полностью применим к схемам электропроводки, собранным по устаревшей системе TN-C. Когда в проводке присутствует РЕ-проводник, то необходимо определять его качество. Это делается подключением проводов прибора между контактом фазы и защитного нуля. Других отличий метода нет.

Электрики не только оценивают сопротивление петли фаза-ноль на конечной розетке, но часто эту процедуру необходимо выполнять на промежуточном элементе, например, клеммнике распределительного шкафа.

У трехфазных систем электроснабжения проверяют состояние цепи каждой фазы по отдельности. Через любую из них может когда-нибудь потечь ток короткого замыкания. А как они собраны покажут измерения.

Зачем выполняется замер

Проверка сопротивления петли фаза-ноль проводится с двумя целями:

1. определение качества монтажа для выявления слабых мест и ошибок;

2. оценка надежности работы выбранных защит.

Выявление качества монтажа

Метод позволяет сравнить измеренную реальную величину сопротивления с расчетной, допускаемой проектом при планировании работ. Если прокладка электропроводки выполнялась качественно, то замеренная величина будет соответствовать требованиям технических нормативов и обеспечит условия безопасной эксплуатации.

Когда расчетное значение петли неизвестно, а реальное замерено, то можно обратиться к специалистам проектной организации для выполнения расчетов и последующего анализа состояния сети. Второй путь — самостоятельно попробовать разобраться в таблицах проектировщиков, но это потребует инженерных знаний.

При завышенном сопротивлении петли придется искать брак в работе. Им может быть:

    грязь, следы коррозии на контактных соединениях;

    заниженное сечение проводов кабеля, например, использование 1,5 квадрата вместо 2,5;

    некачественное выполнение скруток, изготовленных уменьшенной длиной без сварки концов;

    использование материала для токоведущих жил с повышенным удельным сопротивлением;

    другие причины.

Оценка надежности работы выбранных защит

Задача решается следующим образом.

Мы знаем величину номинального напряжения сети и определили значение полного сопротивления петли. При возникновении металлического короткого замыкания фазы на ноль по этой цепочке потечет ток однофазного КЗ.

Его величина определится по формуле Iкз=Uном/Zп.

Рассмотрим этот вопрос для значения полного сопротивления, например, в 1,47 Ом. Iкз=220 В/1,47Ом=150А

Такую величину мы определили. Теперь остается по ней оценить качество выбора номиналов защитного автоматического выключателя, установленного в эту цепочку для ликвидации аварий.

Допустим, что в электрощитке установлен автоматический выключатель класса «С» с номинальным током 16 ампер и кратностью 10. Для него ток отключения КЗ электромагнитным расцепителем должен быть не менее, чем рассчитанный по формуле: I=1,1х16х10=176 А. А мы рассчитали 150 А.

Делаем 2 вывода:

1. Ток работы электромагнитной отсечки меньше, чем может возникнуть в схеме. Поэтому отключения автоматического выключателя от нее не будет, а произойдет только работа теплового расцепителя. Но его время превысит 0,4 секунды и не обеспечит безопасность — высока вероятность возникновения пожара.

2. Автоматический выключатель установлен неправильно и подлежит замене.

Все перечисленные факты позволяют понять почему профессиональные электрики уделяют особое внимание надежной сборке электрических цепей и выполняют замер сопротивления петли фаза-ноль сразу после монтажа, периодически в процессе эксплуатации и при сомнениях в правильности работы защитных автоматов.

Все мы хотим видеть электроснабжение нашего электрооборудования безопасным и безупречным, но не всегда желаемое можно выдавать за действительное. В процессе беспощадной эксплуатации энергосистемы и электрооборудования, пользователи забывают о том, что её надо периодически обследовать и заранее выявлять всевозможные неисправности. Не стоит дожидаться, когда пропадёт фаза в недрах скрытой электропроводки, а для включения электрооборудования срочно надо искать калоши и диэлектрические перчатки, подпирая палкой постоянно отключающийся автоматический выключатель. Как же уберечь себя от свалившихся на голову неприятностей? Для предупреждения и устранения вышеперечисленных неисправностей, требуется периодически проводить комплекс электроизмерений. В этой статье мы хотим рассказать вам о замере сопротивления цепи «фаза — нуль». Как и для каких целей требуется проводить замер сопротивления цепи «фаза — нуль».

Статьи цикла:»Электролаборатория и электроизмерения»:
1. Электролаборатория и электроизмерения. Введение
2. Что такое электролаборатория и для чего нужны электроизмерения
3. Электролаборатория. Смета на проведение комплекса электроизмерений электросети. Расчёт стоимости работ на электроизмерения
4. Электролаборатория проводит визуальный осмотр электропроводки и электрооборудования
5. Электролаборатория. Замер заземления. Электропроводка. Электрооборудование
6. Электролаборатория. Замер сопротивления изоляции. Электроизмерения. Электропроводка
7. Электролаборатория. Замер сопротивления цепи “фаза-нуль”. Электроизмерения
8. Электролаборатория – замеры и испытание выключателей автоматических управляемых дифференциальным током (УЗО)
9. Электролаборатория выполняет испытания (прогрузку) автоматических выключателей
10. Электролаборатория проводит электроизмерение “Замер сопротивления заземляющих устройств”

Протокол электроизмерения петли "фаза - нуль"

Читайте также:


  • Очень часто специалисты электролаборатории (инженеры эл.наладчики) слышат в свою сторону укоры, что работа по комплексу электроизмерений бессмысленна и бесполезна, так как она влечёт за собой дополнительные затраты со стороны заказчиков. Давайте...


  • Игорь Какое именно оборудование проверяется и какова периодичность профилактического измерения электрооборудования и электросетей в офисных центрах. Ответ: Испытаниям и электроизмерениям подлежат все электроустановки здания, от вводного аппарата защиты в вводно-распределительном устройстве до розеток...


  • Андрей Электролаборатория в результате замера сопротивления петли “фаза-нуль” на мостовом кране (1971 года ввода в эксплуатацию) выдала заключение, что вводной автомат (А3144 600А Iуст. тепл=750А, Iкз=4200А) не прошел проверку, т.к. Zфаза-0=0.35 ...


  • Виктор Степанович Что включает в себя замер полного сопротивления цепи ” фаза-нуль”? Подскажите, как часто должен производиться замер полного сопротивления цепи “фаза-нуль”? В соответствии с ПТЭЭП для контроля чувствительности защит к однофазным...


  • Вячеслав Выполняя электроизмерения, замер сопротивления петли “фаза-нуль”, прибор показал на одной фазе 1.3 Ом, на остальных — 0.8 Ом. Питающий кабель ВВГ 4 х 6, медь. Длина кабельной линии 40метров, установлен...

15 Комментария(-ев) на ”Электролаборатория. Замер сопротивления цепи «фаза-нуль». Электроизмерения”

    Здравствуйте!

    Подскажите каким проводом будит правильно заземлить передвижную эл.установку 380В. Проводом ПЩ или ПВЗ(в оболочке). Просто на одном комплексе видел заземление смонтированное проводом ПЩ который был в прозрачной оболочке на барабане.Комплексы нового поколения Узо итп.

    Здравствуйте,Алексей!Согласно ПУЭ, заземляющие проводники,а также защитные, и проводники уравнивания потенциалов в передвижных электроустановках должны быть медными, гибкими.Наименьшее сечение заземляющих проводников должно равняться:
    1.сечению фазных проводников, при сечении до 16 кв мм.,
    2.16 кв.мм. при сечении фазных проводников от 16 до 35 кв мм,
    3.сечению фазного провода пополам при сечении фазного провода более 35 кв мм.

    Здравствуйте! Большое спасибо за ответ. Про сечение ясно.Так каким проводом должно(и может допускаться) выполнение заземления. Многопроволочным проводом с полвинилхлорид. изоляцией или ПЩ без изоляции? Вот на это мне нужен ответ. Спасибо

    Здравствуйте! Проверяемый щиток состоит из вводного автомата и пяти отходящих. Проверяю петлю фаза-ноль. С отходящими все понятно: оцениваются по току КЗ. Но как вводить в отчет этот вводной автомат, и каковы критерии его оценки? Как быть с током КЗ для него?

    • Здравствуйте, Олег!
      Значение тока однофазного короткого замыкания не нормируется, однако в соответствии с ПУЭ-7 ток должен быть достаточным для обеспечения требуемого времени срабатывания. Вам необходимо во время замеров сопротивления петли «фаза-нуль» определить фактическое значение тока однофазного короткого замыкания. Значение тока однофазного короткого замыкания определяется расчетным путем на основании значения сопротивления петли «фаза-нуль», полученного путем замеров во время испытаний. Требуется убедиться, что фактический ток однофазного короткого замыкания обеспечивает время срабатывания защитного аппарата, не превышающее значений, нормированных п. 1.7.79 ПУЭ-7 п. 1.7.79, для чего необходимо иметь времятоковую (обратнозависимую) характеристику этого защитного аппарата. Если документация завода-изготовителя на соответствующие защитные аппараты, содержащая времятоковые характеристики, отсутствует, то эти характеристики следует снимать при выполнении пусконаладочных работ или периодических электроиспытаний.

    Здравствуйте! Подскажите, пожалуйста, ответ на такой вопрос: какова допустимая величина сопротивления заземляющего проводника? Заранее благодарна!

    Ваш сайт изумительный. Случайно попал. Всё лаконично, конкретно, общедоступно, профессионально. Спасибо. Вопрос: при подключении оборудования цеха трёхфазным напряжением, возможно-ли подключение однофазного местного освещения станков к этой сети?

    • Здравствуйте, Сергей!

    Доброго времени суток!
    Ответьте, пожалуйста, на вопрос: Мне нужно измерить цепи «фаза- нуль» в ВРУ, в котором есть несколько отходящих линий… Каким образом и в какой последовательности я должен делать замеры? А самое главное в каком месте? И какое количество записей я должен сделать в протоколе?

    Заранее спасибо!

    Добрый день, подскажите, какой процент линий в электроустановке подлежит проверке при периодических испытаниях петли ф-0 и сопротивления изоляции?

    • Здравствуйте, Георгий!
      Ваш вопрос перенаправлен на . Вы можете зарегистрироваться на форуме и более подробно обсудить « » с участниками форума.

Надежность работы электрических сетей TN с классом напряжения до 1 кВ во многом зависит от параметров срабатывания защитного оборудования, отключающего аварийный участок при образовании сверхтоков. Существует несколько методик, позволяющих проверить надежность срабатывания автоматов защиты, сегодня мы подробно рассмотрим одну из них – измерение сопротивления петли «фаза-ноль». Для лучшего понимания процесса начнем с краткого описания терминологии, после чего перейдем к методике электрических испытаний при помощи специального устройства MZC-300.

Что подразумевается под цепью «фаза-ноль»?

В системах с глухозаземленной нейтралью (подробно о них можно прочитать в статье ) при контакте одной из фаз с рабочим нулем или защитным проводником РЕ, образуется петля фаза-ноль, характерная для однофазного КЗ.

Как и любая электроцепь, она имеет внутреннее сопротивление, расчет которого позволяет определить остальные значащие параметры, в частности, ток КЗ. К сожалению, самостоятельный расчет сопротивления такой цепи связан с определенными трудностями, вызванными необходимостью учета многих составляющих, например:

  • Суммарная величина всех переходных сопротивлений петли, возникающих в АВ, предохранителях, коммутационном оборудовании и т.д.
  • Движение электротока при нештатном режиме. Петля может образоваться как с рабочим нулем, так и заземленными конструкциями здания.

Учесть в расчетах все перечисленные составляющие на практике не реально, именно поэтому возникает необходимость в электрических измерениях. Спецоборудование позволяет получить необходимые параметры автоматически.

Необходимость в измерениях

Замер сопротивления петли проводится в следующих случаях:

  • При вводе в эксплуатацию, после ремонта, модернизации или переоборудовании установок.
  • Требование со стороны служб различных служб контроля, например Облэнерго, Ростехнадзор и т.д.
  • По заявлению потребителя.

В ходе электрических замеров устанавливаются определенные параметры петли Ф-Н, а именно:

  • Общее сопротивление цепи, которое включает в себя:

электросопротивление трансформатора на подстанции;

аналогичный параметр линейного проводника и рабочего нуля;

образующиеся в коммутационном оборудовании многочисленные переходные сопротивления, например в защитных устройствах (АВ, УЗО, диффавтоматах), пускателях, ручных коммутаторах и т.д. Также влияние оказывает сечение проводников, изоляция кабелей, заземление нейтрали трансформатора, параметры УЗО или другой защиты электроустановок.

  • Ток КЗ (I КЗ). В принципе, его можно рассчитать, используя формулу: I КЗ = U Н /Z П, где U Н – номинальный уровень напряжения в электросети, а Z П – общее сопротивление петли. Учитывая, что защитные устройства при КЗ должны автоматически отключать питание согласно установленным временным нормам, то необходимо выполнение следующего условия: Z П *I AB <= U Н. В данном случае I AB ток, при котором срабатывает АВ или другое устройство защиты, его величина должна уступать I КЗ.

Перед описанием детальных методик измерений, необходимо кратко описать прибор, который будет использоваться в процессе – MZC-300. Мы остановили свой выбор на этом устройстве, поскольку оно чаще всего применяется измерительными лабораториями.

Краткое описание MZC-300

Рассмотрим внешний вид и основные элементы измерителя MZC-300.

Обозначения:

  1. Информационный дисплей. Полное описание его полей можно найти в руководстве по эксплуатации.
  2. Кнопка «Старт». Запускает следующие процессы измерений:
  • Z П, напомним, это общее сопротивление цепи Ф-Н.
  • I КЗ – ожидаемый ток КЗ.
  • Активного сопротивления, необходимо для калибровки прибора.

Старт каждого измерения сопровождается характерным звуковым сигналом.

  1. Кнопка «SEL». Служит для последовательного вывода на информационный дисплей всех характеристик петли, полученных в результате последнего замера. В частности отображается следующая информация:
  • Параметры Z П.
  • Ожидаемый I КЗ.
  • Уровень активного и реактивного сопротивления (R и Х).
  • Фазный угол ϕ.
  1. Кнопка «Z/I». По окончании испытаний переключает на дисплее отображение характеристик между ожидаемым I КЗ и Z П.
  2. Кнопка отключения/включения измерительного устройства. Если при запуске прибора одновременно с данной кнопкой нажать «SEL», то измеритель перейдет в режим автокалибровки. Его подробное описание можно найти в руководстве пользования.
  3. Разъем для подключения щупа, контактирующего с рабочим нулем, проводником РЕ или, PEN. Соответствующее обозначение нанесено на корпус прибора.
  4. Разъем щупа, подключаемого к одному из фазных проводов. Как правило, помечен литерой «L».
  5. Как и разъем i, в отличии от гнезд для измерительных проводов, используется только в режиме автоматической калибровки. На корпусе прибора обозначаются как «К1» и «К2».

Подготовительный этап

Практически все методы измерений цепи «фаза-ноль» не позволяют получить точную информацию о таких характеристиках, как Z П и I КЗ. Это связано с тем, что векторная природа напряжения не принимается во внимание. Проще говоря, учитываются упрощенные условия при коротком замыкании. В процессе испытания электроустановок такая приближенность допускается только в тех случаях, когда уровень реактивного сопротивления не имеет существенного влияния.

Перед тем, как приступить к измерению характеристик петли «Ф-Н», предварительно следует провести ряд предварительных испытаний. В частности, проверить непрерывность и уровень сопротивления защитных линий. После этого измерить сопротивление между и основными металлическими элементами конструкции здания.

Методика измерений с использованием MZC-300

Прежде, чем переходить непосредственно к испытаниям, кратко расскажем о принятом порядке, он включает в себя:

  • Соблюдение определенных условий, обеспечивающих необходимую точность.
  • Выбор способа подключения устройства.
  • Получение информации о напряжении сети.
  • Измерение основных характеристик петли «Ф-Н».
  • Считывание полученной информации.

Рассмотрим каждый из перечисленных выше этапов.

Соблюдение определенных условий

Следует принять во внимания некоторые особенности работы измерителя:

  • Устройство не допустит проведение испытаний, если номинальное напряжение сети превысит максимальное значение (250В). Превышение диапазона измерения (250,0 В) приведет к тому, что на экране прибора отобразится предупреждение «OFL» сопровождаемое продолжительным звучанием зуммера. В этом случае прибор следует выключить и отключить от измеряемой петли.
  • При на экране устройства будет высвечиваться ошибка в виде символа «–», сопровождаемая длительным сигналом зуммера.
  • Уровень напряжения в измеряемой петле недостаточное для испытаний, как правило, если ниже 180,0 вольт. В таком случае экран выдаст ошибку с символом «U», сопровождаемую двумя сигналами зуммера.
  • Срабатывание термической блокировки прибора. При этом на экране высвечивается символ «Т», а зуммер выдает два продолжительных сигнала.

Выбор способа подключения устройства

Рассмотрим несколько вариантов электрических схем подключения прибора для проведения испытаний:



  1. Для проверки надежности заземления электрооборудования применяется способ подключения, приведенный ниже.

Важно! Вне зависимости способа подключения прибора необходимо убедиться в надежности соединения проводов.

Получение информации о напряжении сети

Рассматриваемый нами прибор позволяет измерить U H в пределах диапазона от 0 до 250,0 вольт. Фазное напряжение отображается на дисплее прибора сразу после нажатия кнопки включения или по истечении пяти секунд, после проведения испытаний (если не было произведено нажатие управляющих кнопок, отвечающих за отображение результатов на экране).

Измерение основных характеристик петли «Ф-Н»

Методика измерения Z П в петле, применяемая в модельном ряде MZC основана на создании искусственного КЗ с использованием ограничивающего сопротивления (10,0 Ом), понижающего величину I КЗ. После испытаний микропроцессор прибора производит расчет Z П, выделяя реактивные и активные составляющие. Процедура измерения не превышает 30,0 мс.

Характерно, что прибор автоматически выбирает нужный диапазон для измерения Z П. При нажатии кнопки «Z/I» на дисплей поочередно выводятся такие основные характеристики петли, как ожидаемый ток КЗ (I КЗ) и общее сопротивление (Z П).

Следует учитывать, что при вычислениях микропроцессор устанавливает величину U H на уровне 220,0 вольт, в то время, как текущее номинальное напряжение может отличаться от расчетного. Поэтому для увеличения точности замеров электрической цепи следует вносить поправку. Например, при действительном U H , равном 240,0 В, поправка для снижения погрешности прибора будет равна 1,09 (то есть необходимо 240 разделить 220).

Процесс измерения характеристик петли запускается кнопкой «Старт».

Важно! Испытания, проводимые при помощи приборов модельного ряда MZC, практически гарантированно приводят к срабатыванию УЗО. Чтобы избежать этого, необходимо предварительно зашунтировать устройства защитного отключения. После проведения измерений не забудьте снять шунт с УЗО.

Считывание полученной информации

Как уже упоминалось выше, испытания начинаются после нажатия кнопки «Старт». После завершения измерений, на экране отображаются характеристики петли «Ф-Н», в зависимости от установленных настроек. Перебор отображаемой на дисплее информации осуществляется при помощи кнопок «SEL» и «Z/I».

Следует учитывать, что прибор MZC-300 отображает только результаты последнего измерения. Если необходимо хранение в электронной памяти результатов всех испытаний потребуется устройство с расширенными возможностями, например прибор MZC-303E.


Такое устройство позволяет не только хранить информацию обо всех измерениях в электронной памяти, но и при необходимости переносить ее на компьютер, при помощи интерфейса USB.

Меры безопасности при измерении петли «Ф-Н»

Согласно требованиям ПУЭ и норм ПТБ испытания должны проводиться подготовленными сотрудниками электролабораторий. Для проведения данных работ необходимо распоряжение или наряд-допуск, выданный работником, обладающим данным правом.

Испытания могут проводить лица, чей возраст не менее 18 лет, прошедшие соответствующее обучение и проверку знаний ПТБ. Бригада электролаборатории должна быть обеспечена соответствующим инструментом, а также всеми необходимыми средствами индивидуальной защиты.

Бригада должна включать в себя, как минимум, двух работников с третьей группой электробезопасности.

Испытания запрещается проводить в помещениях повышенной опасности, а также, если имеет место высокая влажность.

По завершению процесса испытаний результаты вносятся в специальные протоколы испытаний (проверки).

Электроснабжение

Проверка условий срабатывания защитного аппарата при однофазном замыкании в сетях напряжением до 1000В с глухим заземлением нейтрали

В электрических сетях напряжением до 1000 в с глухим заземлением нейтрали должно быть обеспечено надежное отключение защитным аппаратом однофазного к. з. Это диктуется требованиями техники безопасности.
Расчетными точками для определения величины тока к. з. являются наиболее удаленные (в электрическом смысле) точки сети, так как именно этим точкам соответствует наименьшее значение тока однофазного к. з.
Величина однофазного тока к. з. может быть определена по приближенной формуле

где U ф - фазное напряжение сети, в;
Z
т - полное сопротивление понижающего трансформатора току замыкания на корпус, ом;
Z
п - полное сопротивление петли фаза - нуль линии до наиболее удаленной точки сети, ом.
Расчетные значения полных сопротивлений понижающих трансформаторов при однофазных замыканиях приведены в табл. 7-1.
Для трансформаторов мощностью более 630 ква при определении тока к. з. можно принять:
Z
т =0
Полное сопротивление петли проводов или жил кабеля линии определяется по формуле

где R п - активное сопротивление фазного (R ф ) и нулевого (Ro) проводов, ом;
R
п =R ф +R о (7-3 )
Х п - индуктивное сопротивление петли проводов или жил кабеля, ом.

Активные сопротивления проводов из цветных металлов определяются по табл. 5-1 . Средние значения индуктивных сопротивлений петель проводов или жил кабелей из цветных металлов на 1 км линии даны в табл. 7-2.
Для стальных проводов индуктивное сопротивление петли проводов определяется по формуле

где Х" п - внешнее индуктивное сопротивление петли из прямого и обратного проводов, равное для воздушной линии напряжением до 1000в 0,6 ом/км; Х" п.п и Х" п.о - внутренние индуктивные сопротивления соответственно прямого и обратного проводов линии, ом/км.
Значения полных сопротивлений петель для проводов и жил кабелей из цветных металлов на 1 км линии даны в табл. 7-3. В табл. 7-6 указаны сопротивления петли "фаза трехжильного кабеля - стальная полоса" для небронированных кабелей.

Таблица 7-1 Расчетные сопротивления трансформаторов при однофазном к. з. на стороне 400/230 в

Тип

Номинальная мощность, ква

Напряжение
обмотки ВН. кв

Схема соединений

Полное сопротивление Zт, ом

ГОСТ401-41

ТМ, ТМА
ТМ
ТМ
ТМ
ТМА
ТСМА
ТСМ
ТМ, ТМА
ТМ, ТМА
ТМ. ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ

20
30
50
100
100
100
100
180
180
320
320
560
560
750
1000
1000

6-10
6-10
6-10
6-10
35
6-10
35
6-10
35
6-10
35
6-10
35
6-10
6-10
35

У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун

1,39
0,9
0,54
0,27
0,25
0,26
0,25
0,15
0,14
0,085
0,08
0,048
0,046
0,036
0,027
0,026

ГОСТ12022-66

ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ

25
40
63
63
100
100
160
160
250
250
400
400
400
630

6-10
6-10
6-10
20
6-10
20-35
6-10
20-35
6-10
20-35
6-10
20-35
6-10
6-10

У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
Д/Ун
У/Ун

1,04
0,65
0,413
0,38
0,26
0,253
0,162
0,159
0,104
0,102
0,065
0,064
0,022
0,043

ГОСТ11920-66

ТМ
ТМ
ТМ
ТМ

1 000
1 000
1 000
1 000

6-10
20-35
6-10
20-35

У/Ун
У/Ун
Д/Ун
Д/Ун

0,027
0,026
0,009
0,01

ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ

160
180
250
320
400
560
630
750
1 000
1 000

6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10

Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун

0,055
0,15
0,035
0,085
0,022
0,048
0,014
0,036
0,009
0,027

Примечания: Для понижающих трансформаторов с напряжением вторичных обмоток 230/133в значения сопротивлений в 3 раза меньше указанных в табл. 7-1.
Условные обозначения схем соединений трансформаторов:
У - звезда; Ун - звезда с выведенной нулевой точкой; Д - треугольник.

Таблица 7-2 Средние значения индуктивных сопротивлений петли прямого и обратного проводов или жил кабеля, выполненного из цветных металлов ом/км

Таблица 7-3 Полные сопротивления петли прямого и обратного провода линии или жил кабеля, ом/км

Сечение провода, мм.кв

Кабель и провода в трубах

Провода на роликах и изоляторах

Провода воздушных линий

прямого

обратного

медные

алюминиевые

медные

алюминиевые

медные

алюминиевые

1
1,5
1,5
2,5
2,5
4
4
4
6
6
6
10
10
10
16
16
16
25

25
25
35
35
35
50

50
50
70
70
70
95

95
95
120
120
120
150

150
150

1
1
1,5
1,5
2,5
1,5
2,5
4
2,5
4
6
4
6
10
6
10
16
10
16
25
10
16
35
16
25
50
25
35
70
35

50
95
50
70
120
50

70
150

37,8
31,5
25,2
20,2
15,1
17,3
12,2
9,3
10,6
7,71
6,12
6,50
4,90
3,68
4,26
3,04
2,40
2,58

1,94
1,49
2,38
1,74
1,09
1,60

1,14
0,793
1,03
0,833
0,58
0,755

0,608
0,428
0,568
0,461
0,350
0,535

0,430
0,285

-
-
-
-
25,2
-
20,5
15,8
17,9
13,2
10,5
11,1

8,42
6,32
7,24
5,14
3,96
4,44

3,26
2,56
4,08
2,90
1,84
2,62

1,92
1,29
1,74
1,39
0,932
1,27
0,99
0,797
0,922
0,745
0,561
0,862
0,687
0,446

-
-
25,2
20,2
15,1
17,3
12,2
9,3
10,6
7,71
6,14
6,52
4,92
3,71
4,28
3,08
2,45
2,62

1,98
1,55
2,42
1,79
1,16
1,65

1,21
0,890
1,11
0,927
0,706
856
0,712
0,566
-
-
-
-
-
-

-
-
-
-
25,2
-
20,5
15,8
17,9
13,2
10,5
11,1

8,42
6,32
7,24
5,15
3,99
4,46

3,30
2,60
4,11
2,96
1,90
2,66

1,97
1,36
1,80
1,45
1,03
1,34

1,08
0,815
-
-
-
-
-
-

-
-
-
-
-
-
-
9,3
-
-
6,16
-
4,96
3,75
4,32
3,13
2,52
2,69
2,08
1,68
2,48
1,87
1,29
1,74
1,32
1,05
1,24
1,08
0,896
1,02
0,915
0,772
0,858
0,792
0,732
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4,03
4,50
3,34
2,66
4,15
3,00
1,96
2,70

2,03
1,44
1,86
1,53
1,13
1,42

1,18
0,907
1,09
0,945
0,808
1,04
0,808
0,732

Таблица 7-6 Полные сопротивления петли "фаза трех жильного кабеля - стальная полоса", ом/км

Сечение кабеля, мм.кв

Ток и материал жил кабеля

Размеры стальной полосы, мм

20X4

40X4

50X4

50X4

60X4

80X4

100X4,
100X6

100X5,
100X8

Ток срабатывания максимального расцепителя автомата, а

1400

1400

1400

1400

1400

1400

Номинальный ток
плавкой вставки безынарционного предохранителя, а

Материал жил кабеля:

Полное сопротивление петли, ом / км

Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюмниий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий

9,59
13,52
7,76
10,34
6,36
7,86
5,6
6,49
5,14
5,70
4,91
5,30
4,75
5,02
4,64
4,83
4,57
4,70
4,51
4,62
4,47
4,56
4,44
4,52

8,42
12,35
6,59
9,17
5,19
6,69
4,43
5,32
3,97
4,53
3,74
4,13
3,58
3,85
3,47
3,66
3,40
3,53
3,34
3,45
3,30
3,39
3,27
3,35

7,82
11,79
5,97
8,59
4,55
6,07
3,78
4,68
3,31
3,88
3,09
3,48
2,92
3,19
2,81
3,0
2,73
2,87
2,69
2,8
2,65
2,74
2,63
2,7

7,45
11,42
6,60
8,22
4,18
5,7
3,41
4,31
2,94
3,51
2,71
3,11
2,55
2,72
2,44
2,63
2,36
2,50
2,32
2,43
2,28
2,37
2,26
2,33

7,40
11,37
5,54
8,17
4,11
5,63
3,32
4,24
2,86
3,43
2,64
3,03
2,47
2,74
2,37
2,55
2,29
2,42
2,24
2,35
2,21
2,29
2,18
2,25

7,17
11,14
5,31
7,94
3,98
5,4
3,09
3,01
2,63
3,2
2,4
2,8
2,24
2,5
2,4
2,32
2,06
2,19
2,01
2,12
1,98
2,06
1,95
2,02

7,14
11,13
5,27
7,92
3,83
5,37
3,04
3,96
2,57
3,15
2,35
2,74
2,19
2,45
2,08
2,26
2,01
2,14
1,96
2,07
1,93
2,01
1,90
1,96

6,92
10,91
5,05
7,7
3,61
5,15
2,82
3,74
2,35
2,93
2,13
2,52
1,97
2,23
1,86
2,04
1,79
1,92
1,74
1,85
1,71
1,79
1,68
1,74

6,82
10,81
4,95
7,61
3,5
5,05
2,71
3,64
2,24
2,82
2,01
2,41
1,86
2,12
1,75
1,93
1,67
1,8
1,63
1,74
1,60
1,65
1,58
1,64

6,59
10,58
4,72
7,38
3,27
4,82
2,48
3,41
2,01
2,59
1,78
2,18
1,63
1,89
1,52
1,7
1,44
1,57
1,4
1,51
1,37
1,47
1,35
1,41

6,56
10,56
4.68
7,34
3,22
4,77
2,42
3,36
1,95
2,53
1,73
2,12
1,57
1,83
1,46
1,64
1,38
1,51
1,35
1,45
1,31
1,39
1,28
1,35

6,45
10,45
4,57
7,23
3,1
4,66
2,31
3,25
1,84
2,42
1,62
2,01
1,46
1,72
1,35
1,53
1,27
1,40
1,24
1,34
1,2
1,28
1,17
1,24 I 3 ;
I
к -наименьшая величина однофазного тока к. з., определяемая по формуле (7-1),а.
Допустимая кратность минимального тока к. з. должна быть не менее 3 по отношению к номинальному току плавкой вставки предохранителя и номинальному току расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику, и не менее 1,1 К р по отношению к току срабатывания автоматического выключателя, имеющего только электромагнитный расцепитель (К р - коэффициент, учитывающий разброс характеристик расцепителя по данным завода).
Для сетей, прокладываемых во взрывоопасных помещениях, допустимые кратности тока к. з. увеличиваются до значения 4 по отношению к номинальному току плавкой вставки предохранителя и 6 по отношению к номинальному току расрасцепителя автоматического выключателя с обратно зависимой от тока характеристикой.
Для сетей, защищаемых только от токов к. з., в необходимых случаях (например, для отстройки от токов самозапуска двигателей) допускается завышение токов плавких вставок предохранителей и уставок расцепителей автоматов, но при этом кратность тока к. з. должна иметь значение не менее 5 по отношению к номинальному току плавкой вставки предохранителя и не менее 1,5 по отношению к току срабатывания электромагнитного расцепителя автомата.
Значения допустимой кратности тока к. з. для различных условий прокладки сети приведены в табл. 7-8.

Таблица 7-8 Значения допустимой минимальной кратности тока к. з. по отношению к току защитного аппарата

Условия прокладки

Допустимая кратность тока к. з. по отношению

к номинальному току плавкой вставки предохранителя

к току уставки срабатывания автоматического выключателя, имеющего только электромагнитный
расцепитель (отсечку)

к номинальному току расцепителя
автоматического выключателя с обратно зависимой от тока характеристикой

Сеть проложена в невзрывоопасном помещении при условии выполнения требований табл. 4-50
Сеть проложена в не взрывоопасном помещении при условии, что требования табл. 4-50 не выполняются
Сеть проложена во взрывоопасном помещении

3

1,1Кр


1,5

1,1Кр

3

Примечания: К р - коэффициент, учитывающий разброс характеристик автоматических выключателей с электромагнитным расцепителем. При отсутствии данных завода о гарантируемой точности уставки тока срабатывания автоматического выключателя с электромагнитным расцепителем (отсечка) допускается принимать значение коэффициента К р для автоматических выключателей на номинальный ток до 100 а равным 1,4, выше 100 а - равным 1,25. При затруднении в выполнении требований, указанных в табл. 7-8, допускается применение быстродействующей защиты от замыкания на землю.

Пример 7-1.

На рис. 7-1 представлена схема четырехпроводной воздушной линии, выполненной алюминиевыми проводами и получающей питание от шин распределительного щита 380/220 в. Нейтраль системы глухо заземлена. Сечения проводов и длины участков линии указаны на рис. 7-1.
Пренебрегая сопротивлением внешней сети до шин щита и сопротивлением трансформатора, проверить действие защитных аппаратов при однофазном к. з. в наиболее удаленных точках линии для следующих вариантов:
1. Линия защищена предохранителями с плавкими вставками на номинальный ток 80 а.
2. Линия защищена автоматическим выключателем типа А 3124 с комбинированными расцепителями на номинальный ток 100 а.
3. Линия защищена автоматическим выключателем типа А 3124 с электромагнитными расцепителями с уставкой тока срабатывания 600 а.

Рис. 7-1. Схема к примеру

С оображения, по которым выбран тот или иной аппарат защиты, здесь не рассматриваются. Пример имеет ограниченную цель - показать типичные случаи проверки защитного отключения при однофазном к. з.

Решение.
Условие срабатывания аппаратов защиты проверяем по формуле (7-5). Определяем сопротивления петли фазного и нулевого проводов линии при однофазном к. з. в такой точке, для которой значение сопротивления будет наибольшим. По табл. 7-.3 находим значения удельных сопротивлений петли "фаза - нуль" для сечений участков линии:

3 X 70+1 X 35 Z n= 1 ,53 ом/км;
3 X 35+1 X 16 Zn=
3 , 0 ом / км ;
3 X
16 +1 X 16 Zn= 4 , 0 3 ом / км ;

Определяем, какая из точек Д или Е является расчетной. Сопротивление петли между точками Г и Д

4,03 X 0,08=0,323 ом;

сопротивление петли между точками Г и Е

3 X 0,13=0,39 ом.

Расчетной оказывается точка Е. Полное сопротивление петли "фаза - нуль" между точками А и Е составляет:

Zn= 1,53(0,07+0,08) +0,39 = 0,62 ом.

Номинальное фазное напряжение

U н = 220 в.

Определяем величину однофазного тока при к. з. в наиболее удаленной точке Е сети (по условию примера следует принять Zт= 0):

Проверяем выполнение условия (7-5) для всех трех вариантов защиты линии.
Вариант 1.
Допустимая минимальная кратность тока к. з. по отношению к номинальному току плавкой вставки предохранителя согласно табл. 7-8 равна:

К 31 = 3.
Отсюда: 3х80=240 а<355 а.

Таким образом, надежное действие защищающих линию предохранителей обеспечивается.
Вариант 2.
Допустимая кратность тока к. з. по отношению к тепловому элементу комбинированного расцепителя, имеющему обратно зависящую от тока характеристику, равна:

К 31 = 3.
Отсюда соотношение (7-5)
3х100=300 а<355 а
выполняется.
Вариант 3.
По данным завода гарантируемая точность уставки для автоматических выключателей типа А 3124 составляет ±15%. Приняв в соответствии с указанием табл. 7-8 коэффициент запаса равным 1,1, получим:

К 31 = 1,1х1,15=1,27;
1,27х600=760 а>355 а.

Надежность действия автоматического выключателя при к. з. в точке Е не обеспечивается.

Пример 7-2.
В системе с глухо заземленной нейтралью при напряжении 380/220 в линия защищается предохранителями с плавкими вставками на номинальный ток 100 а. Полагая Zт = 0, определить наибольшую длину линии, при которой будет обеспечиваться надежное перегорание предохранителей при однофазном к. з. в конце линии для следующих вариантов выполнения линии:
1. Воздушная линия с алюминиевыми проводами сечением 3 X 50+1 X 25 мм.кв.
2. Трехжильный кабель с алюминиевыми жилами сечением 3X50 мм.кв в алюминиевой оболочке, используемой в качестве заземляющего провода.
3. Трехжильный небронированный кабель с алюминиевыми жилами сечением 3 X 50 мм.кв с заземляющей шиной в виде стальной полосы сечением 50 X 4 мм.

Решение.
По табл. 7-8 определяем минимально допустимую кратность тока к. з.:

К 31 = 3.

Наименьшая допустимая величина однофазного тока к. з.

I
к = 3х100=300 а.

Учитывая, что по условию примера Zт = 0, находим по формуле (7-1) наибольшее допустимое сопротивление "фаза - нуль" линии:

Определяем удельное сопротивление 1 км петли "фаза - нуль": для варианта 1 по табл. 7-3
Z п = 2,03 ом/км;
для варианта 2
Z п = 1,03 ом/км;
для варианта 3 по табл. 7-6
Z п = 2,74 ом/км.

Наибольшие допустимые длины линии будут равны:
вариант 1

вариант 2

вариант 3

Наибольшая длина линии обеспечивается применением кабеля с использованием алюминиевой оболочки в качестве заземляющего (нулевого) провода.

Электролаборатория ГК Эколайф выполняет измерение сопротивления петли «фаза-ноль» на основе действующего Свидетельства о регистрации электролаборатории, с учетом действующих нормативных документов: Правил Устройства Электроустановок, Правил Технической Эксплуатации Электроустановок Потребителей, ГОСТ и других.

Договор на услуги электолаборатории

Наша компания работает с юридическими и физическими лицами. Мы заключаем договор на услуги электролаборатории, который является документом, четко определяющим стоимость и сроки выполнения работ. Заранее обговоренные условия снижают риски для обеих сторон, а также обеспечивают выгоду сделки для продавца и покупателя.
Подписание актов выполненных работ и приема-передачи оборудования означает успешное окончание работ. Мы предоставляем полный пакет документов, в том числе накладные, акты, счета-фактуры и кассовые чеки при оплате наличными, акты пуско-наладки, параметры настройки системы.

Выезд инженера для расчета стоимости работ производится бесплатно

Введение

Все слышали фразу "Человек быстро привыкает к хорошему". Но всегда ли мы её осознаём? Вспомните ситуацию, когда человек сидит за компьютером или смотрит телевизор, и происходит отключение электроэнергии. Многие раздосадованные люди в этот момент решают, что если уж отдохнуть не получилось, то нужно пойти что-нибудь сделать полезного. И достают пылесос или пытаются включить стиральную машину, забывая, что и эти приборы работают от электричества!

Именно для того, что подобные отключения были более редкими, а система электроснабжения оставалась надёжной, необходимо проведение технического обслуживания и профилактических работ. И в данной статье пойдёт речь об очень важном исследовании, которое является обязательным в составе Технического отчёта электротехнической лаборатории.

Необходимость проведения замера петли "фаза-ноль"

Конечно же, деятельность любой электролаборатории направлена на предупреждение аварийных ситуаций в работе электроустановок всех типов. Проверка параметров цепи «фаза-ноль» - не исключение. Но для того чтобы понять, на предупреждение каких именно негативных последствий направлено данное измерение, нужно знать конечную цель этого измерения.
Ни для кого не секрет, что жилы одного кабеля ни в коем случае нельзя замыкать. Но если это произошло, то произойдёт очень красочное и яркое зрелище, под названием "короткое замыкание" (или сокращённо "К.З."). Это информация так же известна всем со школьной скамьи из уроков физики. А вот что мало кто помнит или не знает вообще, так это о том факте, что при коротком замыкании происходит резкий скачок тока, в результате которого жилы кабеля невероятно сильно нагреваются, в доли секунды плавят и воспламеняют изоляцию. А если основание, по которому проложен кабель, горючее, то вероятность возникновения пожара неминуема.

Именно поэтому в электроустановках используют автоматические устройства защитного отключения, такие как автоматические или дифференциальные выключатели, устройства защитного отключения (УЗО), плавкие вставки и т.п. Их назначение - вовремя прекратить подачу электричества в линию с коротким замыканием. И, говоря "вовремя", имеются в виду доли секунды, ведь докрасна нагретый кабель и салют из искр способны спровоцировать пожар в очень короткий промежуток времени.

Из всего вышеизложенного напрашивается очевидный вывод: для того, чтобы избежать разрушающих последствий короткого замыкания, необходимо рассчитать и установить нужное по характеристикам устройство защиты. Собственно, ради этого и проводится проверка параметров цепи «фаза - нуль».

Периодичность испытаний петли фаза ноль

Электричество, энергоносители и энергопотребители - вещи динамические, потому что зависят от множества условий, параметров и характеристик. Конечно, никто не говорит о резких и глобальных изменениях, но некоторые колебания электрической сети, безусловно, присущи. Именно поэтому за состоянием элементов электроустановок необходимо постоянно следить и проводить периодические испытания их составляющих.

Для наглядности можно рассмотреть вот такой пример. Подавляющее большинство людей думают, что в каждой бытовой розетке используется напряжение ровно 220 вольт. В действительности, напряжение может быть различным даже в соседних зданиях. Более того, ГОСТами это предусмотрено: допустимое отклонение +/- 5%, предельное отклонение +/- 10% от номинальных 220 или 230 вольт. Следовательно, если замер напряжения в сети 220В показывает параметр, находящийся в диапазоне от 198 до 242 вольт, то это норма. А если в качестве номинального используется напряжение 230В, то верхний порог может достигать 253 вольт, и это так же будет нормой. Нормой, с предельным отклонением, но всё же нормой!
Получается, что максимально допустимая вилка разницы напряжения в сети, в зависимости от номинальных 220 или 230 вольт, может составлять 44 или 46 вольт (от -10% до + 10%) соответственно. Серьёзный перепад напряжения, не правда ли?! И подобные перепады, безусловно, не лучшим образом влияют на электроустановки и систему электроснабжения в целом. А если забежать немного вперёд и учесть, что ток короткого замыкания является отношением напряжения цепи к полному сопротивлению её проводников, то можно смело заявить, что величина напряжения напрямую влияет на величину тока короткого замыкания, и чем выше напряжение, тем ток при коротком замыкании будет больше.

Приведённая в данном примере вариантность параметра сети лишь частность. Таких примеров можно назвать бесконечное множество. Причин, влияющих на возникновение подобных примеров, много. В этом списке источники энергоснабжения (электроснабжающие подстанции, промежуточные трансформаторы), качество и состояние электрических проводников и электроустановок, количество потребителей и т.д. Главное - нужно понимать, что состояние этих "причин" не статично, оно постоянно изменяется. Ведь может же в сети измениться количество потребителей? Конечно, может! Следовательно, напряжение в сети хоть немного да изменится. А значит и ток короткого замыкания тоже изменится. Это и является основанием для проведения периодических проверок как отдельных цепей сети, так и электроустановки в целом.

Отметим, что "Правилами Устройства Электроустановок" (ПУЭ ), а так же "Правилами Технической Эксплуатации Электроустановок Потребителей" (ПТЭЭП ), проведение проверки параметров петли "фаза-ноль" регламентировано не реже одного раза в три года . Для электроустановок, расположенных в опасных зонах, не реже одного раза в два года .

Помимо периодических проверок, замеры петли "фаза-ноль" в обязательном порядке необходимо проводить после монтажа электроустановки, а также после проведения капитального её ремонта .

Суть и методика проведения проверки сопротивления петли фаза ноль

Если кратко, то суть процесса заключается в определении тока короткого замыкания на отдельно взятой линии сети, и сопоставление этого параметра с установленным на той же линии автоматическим устройством защиты. Если перефразировать, то измерение призвано выявить, верно ли подобраны автоматические выключатели по токовременным характеристикам.

А раз измерение так или иначе сводится к характеристикам автоматических устройств защиты, то стоит немного рассказать и о них.
Вообще, устройства защиты, будь то автоматический выключатель, диффавтомат, УЗО или любой другой - устройство довольно простое. И характеристик оно имеет не так уж и много. Но так как в рамках данной статьи нам интересны лишь время-токовые характеристики, то остановимся именно на них.
Любой автоматический выключатель имеет на своей лицевой стороне маркировку. Среди прочих характеристик, там указаны торговая марка, номинальное напряжение, ток и частота сети, для которой этот автомат предназначен, и прочее. Так же, в обязательном порядке маркировка содержит информацию о время-токовой характеристике отключения устройства. Маркируется эта характеристика указанием латинской буквы B, C, D или К (для однофазных автоматов). Следом за этой буквой следует цифра, обозначающая номинальный ток автоматического выключателя. Выглядеть эта аббревиатура может, например, так: "В16", "С32" или "D50". Но так как нас интересует время и токовая величина срабатывания автомата при коротком замыкании, остановимся именно на них.

Что же обозначают буквы B, C, D и К? В этих буквах заключен очень простой смысл, а именно: при каком кратковременном превышении номинального тока автомат сработает (отключится). За основу этого параметра принят, как уже стало понятно, номинальный ток, а показатель превышения измеряется в кратном его увеличении.

Параметры кратности тока, соответствующие этим буквам, следующие:

Тип «B» - отключение автоматического устройства защиты произойдёт, если ток короткого замыкания будет превышать номинальный ток в 3 - 5 раз;
. тип «С» - такой автомат сработает при кратковременном скачке номинального тока в 5 - 10 раз
. тип «D» и «К» - автоматические выключатели этого типа будут эффективны, если номинальный ток увеличится в 10 - 14-ти кратном размере от номинала.

По времени срабатывания в зоне токов короткого замыкания автоматические выключатели подразделяются на:

Селективные - с отключением автоматического выключателя с выдержкой времени,
. нормальные (с временем срабатывания 0,02-1 секунды)
. быстродействующие (с временем срабатывания менее 0,005 секунды).

Теперь, зная параметры защитных устройств на каждой ветке электрической сети, остаётся сопоставить их с данными самой сети. Но, в отличие от автоматических выключателей, показатели сети не статичны и могут претерпевать изменения в процессе эксплуатации. Поэтому и необходимо с определённой периодичностью проводить проверку этих параметров с помощью измерения характеристик петли "фаза-ноль".

Саму процедуру проведения проверки параметров цепи "фаза-ноль" можно разделить на три этапа.

Проведение визуального осмотра;
. Непосредственное проведение измерений;
. Подведение итогов.

1 этап. Проведение визуального осмотра электроустановки

Во время осмотра, помимо исследования электроустановки, изучения документации и схем, проверки кабельных трасс и корпусов электрооборудования на предмет повреждений, проводят протяжку кабельных соединений в устройствах защиты. Проще говоря - затягивают болты на кабельных клеммах автоматических выключателях. Это крайне важное действие, без которого полученные результаты измерений могут быть просто неверными.

2 этап. Проведение измерений петли фаза ноль

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки.

Полученные данные обрабатывают и с помощью формул определяют нужный параметр. В последние годы именно этот метод завоевал наибольшую популярность.

В сущности, само по себе измерение достаточно примитивно. Оно заключается в определении точных показателей напряжения в сети и сопротивления измеряемых проводников - "фазы" с "нулём", или "фазы" с "землёй" - в зависимости от того, какая именно петля подвергается испытаниям. После подключения щупов прибора к клеммам, прибор автоматически выдаёт на экране показатель напряжения сети, а затем измеряет сопротивление одновременно на проверяемой линии и обмотке трансформатора. Оба значения сопротивления суммируются и получается величина сопротивления, которая будет необходима при дальнейших расчётах.

Для измерений выбирают самые дальние точки линий сети. Если такую точку определить сложно, то проводят измерения по всей линии. Под "точками" понимаются розетки, а так же оборудование, имеющее металлический корпус (станки, двигатели, светильники и т.д.)

После того, как получены оба значения - напряжение и сопротивление сети - можно переходить к расчётам, которые покажут ток короткого замыкания, и помогут определить, правильно ли установлены аппараты защиты.

3 этап. Проведение расчетов и составление протокола испытания

Составление протокола - это просто запись результатов проведения испытаний, и на нём мы остановимся позже. Сейчас же необходимо рассказать о проведении расчётов.

Ток короткого замыкания отражается в следующей зависимости:

где: Iкз - ток короткого замыкания; Uо - фазное напряжение; Rфо - полное сопротивление цепи.

На примере данный расчёт будет выглядеть следующим образом.
Предположим, что измерительный прибор выдал напряжение 225 вольт и полное сопротивление цепи 0,85 Ом. Автоматический выключатель, установленный для защиты этой цепи, имеет маркировку C32.

Итак, для начала нужно определить токовые рамки, в которых установленный автомат будет эффективен. Его маркировка С32 говорит о том, что это защитное устройство рассчитано на номинальное напряжение в 32 ампера, и относится к типу "С", что означает его эффективность проявляется при кратности тока короткого замыкания в пределах от 5 до 10 от номинального. Пятикратное умножение номинального тока дают нам 160 ампер, а десятикратное - 320. То есть, ток короткого замыкания должен быть в пределах от 160 до 320 ампер. Формула данного условия будет выглядеть вот так:

160А ≤ Iкз ≤ 320А

Теперь вычисляем непосредственно величину тока короткого замыкания. Исходные данные для этого расчёта - напряжение и полное сопротивление цепи - берём из результатов измерений.
Подставляем эти цифры в формулу и получаем следующее:

Iкз=225 В / 0,85 Ом=264,7 А

То есть, если в данной цепи произойдёт короткое замыкание, то при этом физическом явлении ток в цепи будет равен 264,7 ампера. Но в нашем примере автоматический выключатель успеет вовремя отреагировать, так как ток короткого замыкания находится как раз в промежутке от 160 до 320 ампер, то есть, в "пределах его юрисдикции"

Приведённый пример достаточно примитивен, но он наглядно показывает процесс исследования. На практике он может быть намного сложнее, в зависимости от того какая цепь сети подвергается замерам. Более того, трёхфазные сети так же подлежат проведению измерений, ведь они тоже попадают в область "электроустановки до 1000В", для которых, собственно, проверка параметров петли "фаза-ноль" актуальна.

Оборудование для проведения замера петли "фаза-ноль"

В сущности, для того, чтобы получить данные для расчёта величины тока короткого замыкания достаточно будет обычного вольтметра и омметра. Но прибор, который делает все необходимые измерения из одной точки, безусловно, гораздо удобнее.

Как уже упоминалось выше, оборудование для проведения испытаний может быть двух типов: работающее без нагрузки в сети, и работающее, когда сеть находится под напряжением. Такая разновидность обусловлена принципом работы приборов. Помимо этого, измерительное оборудование можно разделить на приборы полного цикла, сразу же вычисляющие ток короткого замыкания цепи, и приборы, измеряющие параметры, необходимые для расчёта тока К.З. на бумаге.

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

. Измеритель М-417 . Проверенный годами и надежный прибор для измерения сопротивления цепи фаза-ноль без снятия питания. Используют для замеров параметра методом падения напряжения. При использовании этого устройства можно провести испытание цепи с напряжением 380 В с глухозаземленной нейтралью. Он обеспечит размыкание измерительной цепи за 0,3 с. Недостатком является необходимость калибровки перед началом работы.

. Измеритель MZC-300. Устройство нового поколения, построенное на базе микропроцессора. Использует метод измерения падения напряжения при подключении известного сопротивления (10 Ом). Напряжение 180-250 В, время замера 0,03 с. Подключают прибор к сети в дальней точке, нажимают кнопку старт. Результат выводится на цифровой дисплей, рассчитанный с помощью процессора.

. Измеритель ИФН-200. Выполняет много функций, в том числе, и измерение петли фаза-ноль. Напряжение 180-250 В. Для подключения к сети есть соответствующие разъемы. Готов к работе через 10 с. Подключаемое сопротивление 10 Ом. При сопротивлении цепи более 1 кОм измерение проводиться не будут - сработает защита. Энергонезависимая память сохраняет 35 последних вычислений.

Результаты измерений петли фаза ноль и возможные последствия

Как уже стало ясно, данное измерение имеет ряд особенностей.

Во-первых, "проверка параметров цепи «фаза - нуль» и непрерывности защитных проводников" (именно такое полное название имеет данное исследование) проводится, как правило, под нагрузкой. То есть, для проведения замеров не требуется отключение электроэнергии. Более того, без электричества в проводниках данный замер будет выполнить попросту невозможно, потому как для расчёта конечных данных требуются параметры напряжения сети и сопротивления жил кабелей.

Во-вторых, измерения проводят на проводниках, а результаты сопоставляют с установленными устройствами защитного отключения. Для данного замера это правильно и логично, но в сравнении, например, с измерением сопротивления изоляции или металлосвязью заземления, где проводимые измерения относятся к испытуемым элементам, данная процедура - исключение.

В третьих, в отличие от прочих испытаний, проводимых электротехническими лабораториями, проверка параметров цепи «фаза - нуль» не требует имитации реальной ситуации. Например, методика проверки автоматических выключателей заключается в их "прогрузке", то есть, подачи на них электрической нагрузки с целью выявления параметров его срабатывания (отключения). Для проверки сопротивления изоляции кабелей, их так же подвергают воздействию электричества с определёнными параметрами. В случае же с измерениями параметров цепи "фаза-ноль", электроустановка просто работает в штатном режиме, и этого более чем достаточно.

Эти особенности накладывают очень большую ответственность на электротехническую лабораторию в части точности и скрупулёзности проведения данной проверки. Не смотря на кажущуюся простоту всего процесса, он таит в себе очень много нюансов, которые способны повлиять на конечный результат. А если конечный результат будет неверным, то последствия ошибки могут быть колоссальными.

Для подтверждения этих слов можно привести самую простую ситуацию, которая, собственно, чаще всего и происходит, если расчёты не верны либо измерения были проведены с нарушениями. Вспомните пример, который был приведён для расчёта. Расчётный ток короткого замыкания цепи фаза-ноль составил 264,7 ампера, при установленном автоматическом выключателе С32. А теперь предположим, что по каким-то причинам для проверяемой ветки было выбрано устройство защиты с характеристикой D или К. Это автоматически переносит функциональные рамки данного автомата в пределы 320 - 448 ампер. То есть, при коротком замыкании этот автоматический выключатель не защитит линию. Следовательно, жилы проводов будут греться, изоляция кабелей будет плавиться и гореть, а автомат будет оставаться в положении "Включено" больше положенного времени. Для таких ситуаций производители предусматривают в защитных устройствах ещё и тепловую защиту, которая призвана разрывать цепь в случае, если электромагнитный расцепитель не сработал.

Если же рассмотреть обратную ситуацию, когда ток короткого замыкания превышает рамки функциональной эффективности автоматического выключателя, то в этом случае электромагнитный расцепитель, безусловно, сработает в положенное временное окно, и линия будет отключена.

Но есть ещё одна крайне неприятная ситуация, при которой может выгореть не только линия, но и само защитное устройство. В очень редких случаях ток короткого замыкания может превышать номинальный в сотни раз! Например, он может составлять 3000, 5000 или даже 10000 ампер. Не смотря на то, что такая ситуация кажется фантастичной, она вполне реальна и объясняется так: при коротком замыкании, когда сопротивление цепи равно нулю, сила тока стремится к бесконечности. В этот момент трансформатор подстанции выдаёт в цепь максимальный ток который он только может выдать.

Что же происходит в этот момент с проводниками и защитными устройствами? Не секрет, что ток создает вокруг проводника магнитное поле. Таким образом, очень большой ток может создать вокруг проводника замкнутых контактов автомата такое магнитное поле, которое препятствует их размыканию (силы пружины автомата недостаточно для разрыва контактов, слипшихся под действием сильного магнитного поля). Для защиты от таких случаев, для всех автоматических выключателей существует такой параметр как "предельно отключаемый ток". Маркируется он на лицевой стороне автомата в виде цифры, обведённой в прямоугольную рамку.
Таким образом цифра (например 4500А) означает, что автомат сможет разорвать цепь, через которую течет ток 4500А. А вот если ток будет 5000А, то автомат не сможет разорвать цепь. Следовательно, становится понятно, что автоматы с цифрой 6000А более надежны, чем автоматы с цифрой 4500А.