Благоустрой... Вредители Выращивание 

Цифровая фазовая модуляция: BPSK, QPSK, DQPSK. Обзор видов модуляции Функциональная схема формирования qpsk радиосигнала

Из теории связи известно, что наивысшей помехоустойчивостью обладает двоичная фазовая модуляция BPSK. Однако в ряде случаев за счет уменьшения помехоустойчивости канала связи можно увеличить его пропускную способность. Более того, при применении помехоустойчивого кодирования можно более точно планировать зону, охватываемую системой мобильной связи.

В четырехпозиционной фазовой модуляции используются четыре значения фазы несущего колебания. В этом случае фаза y(t) сигнала, описываемого выражением (25) должна принимать четыре значения: 0°, 90°, 180° и 270°. Однако чаще используются другие значения фаз: 45°, 135°, 225° и 315°. Такой вид представления квадратурной фазовой модуляции приведен на рисунке 1.


Рисунок 1. Полярная диаграмма сигнала четырехпозиционной фазовой модуляции QPSK

На этом же рисунке представлены значения бит, передаваемых каждым состоянием фазы несущего колебания. Каждое состояние осуществляет передачу сразу двух бит полезной информации. При этом содержимое бит выбрано таким образом, чтобы переход к соседнему состоянию фазы несущего колебания за счет ошибки приема приводил не более чем к одиночной битовой ошибке.

Обычно для формирования сигнала QPSK модуляции используется квадратурный модулятор. Для реализации квадратурного модулятора потребуется два умножителя и . На входы умножителей можно подавать входные битовые потоки непосредственно в коде NRZ. такого модулятора приведена на рисунке 2.



Рисунок 2. Структурная схема модулятора QPSK – NRZ

Так как при этом в течение одного символьного интервала передается сразу два бита входного битового потока, то символьная скорость этого вида модуляции составляет 2 бита на символ. Это означает, что при реализации модулятора следует разделять входной поток на две составляющих — синфазную составляющую I и квадратурную составляющую Q. Синхронизацию последующих блоков следует вести с символьной скоростью.

При такой реализации спектр сигнала на выходе модулятора получается ничем не ограниченный и его примерный вид приведен на рисунке 3.



Рисунок 3. Спектр сигнала четырехпозиционной фазовой модуляции QPSK, модулированного сигналом NRZ

Естественно, этот сигнал можно ограничить по спектру при помощи полосового фильтра, включенного на выходе модулятора, однако так никогда не делают. Намного эффективнее работает фильтр Найквиста. Структурная схема квадратурного модулятора сигнала QPSK, построенная с использованием фильтра Найквиста приведена на рисунке 4.



Рисунок 4. Структурная схема модулятора QPSK с использованием фильтра Найквиста

Фильтр Найквиста можно реализовать только с использованием цифровой техники, поэтому в схеме, приведенной на рисунке 4, перед квадратурным модулятором предусмотрен цифро-аналоговый преобразователь (ЦАП). Особенностью работы фильтра Найквиста является то, что в промежутках между отсчетными точками сигнал на его входе должен отсутствовать, поэтому на его входе стоит формирователь импульсов, выдающий сигнал на свой выход только в момент отсчетных точек. Все остальное время на его выходе присутствует нулевой сигнал.

Пример формы передаваемого цифрового сигнала на выходе фильтра Найквиста приведен на рисунке 5. Сигнал на графике выглядит непрерывным благодаря достаточно высокой частоте дискретизации.



Рисунок 5. Пример временной диаграммы сигнала Q при четырехпозиционной фазовой модуляции QPSK

Так как для сужения спектра радиосигнала в передающем устройстве используется фильтр Найквиста, то межсимвольные искажения в сигнале отсутствуют только в сигнальных точках. Это отчетливо видно по глазковой диаграмме сигнала Q, приведенной на рисунке 6.



Рисунок 6. глазковая диаграмма сигнала на входе Q модулятора

Кроме сужения спектра сигнала, применение фильтра Найквиста приводит к изменению амплитуды формируемого сигнала. В промежутках между отсчетными точками сигнала амплитуда может, как возрастать по отношению к номинальному значению, так и уменьшаться почти до нулевого значения.

Для того чтобы отследить изменения, как амплитуды сигнала QPSK, так и его фазы лучше воспользоваться векторной диаграммой. Векторная диаграмма того же самого сигнала, что приведен на рисунках 5 и 6, показана на рисунке 7.


Рисунок 7 векторная диаграмма QPSK сигнала c α = 0.6

Изменение амплитуды сигнала QPSK видно и на осциллограмме сигнала QPSK на выходе модулятора. Наиболее характерный участок временной диаграммы сигнала, приведенного на рисунках 6 и 7, показан на рисунке 8. На этом рисунке отчетливо видны как провалы амплитуды несущей модулированного сигнала, так и увеличение ее значения относительно номинального уровня.



Рисунок 8. временная диаграмма QPSK сигнала c α = 0.6

Сигналы на рисунках 5 ... 8 приведены для случая использования фильтра Найквиста с коэффициентом скругления a = 0.6 . При использовании фильтра Найквиста с меньшим значением этого коэффициента влияние боковых лепестков импульсной характеристики фильтра Найквиста будет сказываться сильнее и явно прослеживающиеся на рисунках 6 и 7 четыре пути прохождения сигналов сольются в одну непрерывную зону. Кроме того, возрастут выбросы амплитуды сигнала относительно номинального значения.



Рисунок 9 – спектрограмма QPSK сигнала c α = 0.6

Присутствие амплитудной модуляции сигнала приводит к тому, что в системах связи, использующих этот вид модуляции, приходится использовать высоколинейный усилитель мощности. К сожалению, такие усилители мощности обладают низким кпд.

Частотная модуляция с минимальным разносом частот позволяет уменьшить ширину полосы частот, занимаемых цифровым радиосигналом в эфире. Однако даже этот вид модуляции не удовлетворяет всем требованиям, предъявляемым к современным радиосистемам мобильной связи. Обычно сигнал MSK в радиопередатчике дофильтровывают обычным фильтром. Именно поэтому появился еще один вид модуляции с еще более узким спектром радиочастот в эфире.

Литература:

  1. "Проектирование радиоприемных устройств" под ред. А.П. Сиверса - М.: "Высшая школа" 1976 стр. 6
  2. Палшков В.В. "Радиоприемные устройства" - М.: "Радио и связь" 1984 стр. 32

Вместе со статьей "Четырехпозиционная фазовая модуляция (QPSK)" читают:


http://сайт/UGFSvSPS/modul/DQPSK/


http://сайт/UGFSvSPS/modul/BPSK/


http://сайт/UGFSvSPS/modul/GMSK/


http://сайт/UGFSvSPS/modul/FFSK/

Цифровая фазовая модуляция - это универсальный и широко используемый метод беспроводной передачи цифровых данных.

В предыдущей статье мы видели, что мы можем использовать дискретные изменения амплитуды или частоты несущей как способ представления единиц и нулей. Неудивительно, что мы также можем представлять цифровые данные с помощью фазы; этот метод называется фазовой манипуляцией (PSK, phase shift keying).

Двоичная фазовая манипуляция

Наиболее простой тип PSK называется двоичной фазовой манипуляцией (BPSK, binary phase shift keying), где «двоичный» относится к использованию двух фазовых смещений (одно для логической единицы и одно для логического нуля).

Мы интуитивно можем признать, что система будет более надежной, если разделение между этими двумя фазами будет большим - конечно, приемнику будет сложно различать символ со смещением фазы 90° от символа со смещением фазы 91°. Для работы у нас есть диапазон фаз 360°, поэтому максимальная разница между фазами логической единицы и логического нуля составляет 180°. Но мы знаем, что переключение синусоиды на 180° - это то же самое, что ее инвертирование; таким образом, мы можем думать о BPSK как о простом инвертировании сигнала несущей в ответ на одно логическое состояние и оставление ее в исходном состоянии в ответ на другое логическое состояние.

Чтобы сделать следующий шаг, мы вспомним, что умножение синусоиды на отрицательную единицу - это то же самое, что ее инвертирование. Это приводит к возможности внедрения BPSK с использованием следующей базовой аппаратной конфигурации:

Базовая схема получения BPSK сигнала

Однако эта схема легко может привести к переходам с высоким наклоном в форме сигнала несущей частоты: если переход между логическими состояниями происходит, когда сигнал несущей находится в своем максимальном значении, напряжение сигнала несущей должно быстро перейти к минимальному значению.

Высокий наклон в форме BPSK сигнала при изменении логического состояния модулирующего сигнала

Такие события с высоким наклоном нежелательны, потому что они создают энергию на высокочастотных составляющих, которые могут помешать другим радиочастотным сигналам. Кроме того, усилители имеют ограниченную способность производить резкие изменения в выходном напряжении.

Если мы усовершенствуем вышеприведенную реализацию двумя дополнительными функциями, то сможем обеспечить плавные переходы между символами. Во-первых, нам необходимо убедиться, что период цифрового бита равен одному или нескольким полным периодам сигнала несущей. Во-вторых, нам необходимо синхронизировать цифровые переходы с сигналом несущей. Благодаря этим усовершенствованиям мы могли бы разработать систему таким образом, чтобы изменение фазы на 180° происходило, когда сигнал несущей частоты находится в пересечении нуля (или близко к нему).

QPSK

BPSK передает один бит на символ, к чему мы и привыкли. Всё, что мы обсуждали в отношении цифровой модуляции, предполагало, что сигнал несущей изменяется в зависимости от того, находится ли цифровое напряжение на низком или высоком логическом уровне, и приемник воссоздает цифровые данные, интерпретируя каждый символ как 0 или 1.

Прежде чем обсуждать квадратурную фазовую манипуляцию (QPSK, quadrature phase shift keying), нам необходимо ввести следующую важную концепцию: нет причин, по которым один символ может передавать только один бит. Это правда, что мир цифровой электроники строится вокруг схем, в которых напряжение находится на одном или другом экстремальном уровне, так что напряжение всегда представляет собой один цифровой бит. Но радиосигнал не является цифровым; скорее, мы используем аналоговые сигналы для передачи цифровых данных, и вполне приемлемо разработать систему, в которой аналоговые сигналы кодируются и интерпретируются таким образом, чтобы один символ представлял два (или более) бита.

Преимущество QPSK заключается в более высокой скорости передачи данных: если мы сохраняем одну и ту же длительность символа, то можем удвоить скорость передачи данных от передатчика к приемнику. Недостатком является сложность системы. (Вы можете подумать, что QPSK более восприимчив к битовым ошибкам, чем BPSK, поскольку разделение между возможными значениями в нем меньше. Это разумное предположение, но если вы рассмотрите их математику, то оказывается, что вероятности ошибок на самом деле очень похожи.)

Варианты

QPSK модуляция, конечно, является эффективным методом модуляции. Но ее можно улучшить.

Скачки фазы

Стандартная QPSK модуляция гарантирует, что переходы между символами будут происходить с высоким наклоном; поскольку скачки фазы могут составлять ±90°, мы не можем использовать подход, описанный для скачков фазы на 180°, создаваемых BPSK модуляцией.

Эту проблему можно смягчить, используя один из двух вариантов QPSK. Квадратурная фазовая манипуляция со сдвигом квадратур (OQPSK, Offset QPSK), которая включает в себя добавление задержки к одному из двух потоков цифровых данных, используемых в процессе модуляции, уменьшает максимальный скачок фазы до 90°. Другим вариантом является π/4-QPSK, которая уменьшает максимальный скачок фазы до 135°. Таким образом, OQPSK обладает преимуществом в уменьшении разрывов фазы, но π/4-QPSK выигрывает, поскольку она совместима с дифференциальном кодированием (обсуждается ниже).

Другим способом решения проблем с разрывами между символами является реализация дополнительной обработки сигналов, которая создает более плавные переходы между символами. Этот подход включен в схему модуляции, называемую частотной модуляцией минимального фазового сдвига (MSK, minimum shift keying), а также улучшение MSK, известное как Гауссовская MSK (GMSK, Gaussian MSK).

Дифференциальное кодирование

Еще одна сложность заключается в том, что демодуляция PSK сигналов сложнее, чем FSK сигналов. Частота является «абсолютной» в том смысле, что изменения частоты всегда можно интерпретировать, анализируя изменения сигнала во времени. Фаза, однако, относительна в том смысле, что она не имеет универсальной опорной точки - передатчик генерирует изменения фазы относительно одного момента времени, а приемник может интерпретировать изменения фазы относительно другого момента времени.

Практическое проявление этого заключается в следующем: если между фазами (или частотами) генераторов, используемых для модуляции и демодуляции, существуют различия, PSK становится ненадежной. И мы должны предположить, что будут разности фаз (если приемник не включает в себя схему восстановления несущей).

Дифференциальная QPSK (DQPSK, differential QPSK) - это вариант, который совместим с некогерентными приемниками (т.е. приемниками, которые не синхронизируют генератор демодуляции с генератором модуляции). Дифференциальная QPSK кодирует данные, создавая определенный сдвиг фазы относительно предыдущего символа таким образом, чтобы схема демодуляции анализировала фазу символа, используя опорную точку, которая является общей и для приемника, и для передатчика.

ЛикБез > Радиосвязь

Четырехпозиционная фазовая модуляция (QPSK)

Из теории связи известно, что наивысшей помехоустойчивостью обладает двоичная фазовая модуляция BPSK. Однако в ряде случаев за счет уменьшения помехоустойчивости канала связи можно увеличить его пропускную способность. Более того, при применении помехоустойчивого кодирования можно более точно планировать зону, охватываемую системой мобильной связи.

В четырехпозиционной фазовой модуляции используются четыре значения фазы несущего колебания. В этом случае фаза y(t) сигнала, описываемого выражением (25) должна принимать четыре значения: 0°, 90°, 180° и 270°. Однако чаще используются другие значения фаз: 45°, 135°, 225° и 315°. Такой вид представления квадратурной фазовой модуляции приведен на рисунке 1.


На этом же рисунке представлены значения бит, передаваемых каждым состоянием фазы несущего колебания. Каждое состояние осуществляет передачу сразу двух бит полезной информации. При этом содержимое бит выбрано таким образом, чтобы переход к соседнему состоянию фазы несущего колебания за счет ошибки приема приводил не более чем к одиночной битовой ошибке.

Обычно для формирования сигнала QPSK модуляции используется квадратурный модулятор. Для реализации квадратурного модулятора потребуется два умножителя и сумматор. На входы умножителей можно подавать входные битовые потоки непосредственно в коде NRZ. Структурная схема такого модулятора приведена на рисунке 2.


Так как при этом виде модуляции в течение одного символьного интервала передается сразу два бита входного битового потока, то символьная скорость этого вида модуляции составляет 2 бита на символ. Это означает, что при реализации модулятора следует разделять входной поток на две составляющих - синфазную составляющую I и квадратурную составляющую Q. Синхронизацию последующих блоков следует вести с символьной скоростью.

При такой реализации спектр сигнала на выходе модулятора получается ничем не ограниченный и его примерный вид приведен на рисунке 3.

Рисунок 3. Спектр сигнала четырехпозиционной фазовой модуляции QPSK, модулированного сигналом NRZ


Естественно, этот сигнал можно ограничить по спектру при помощи полосового фильтра, включенного на выходе модулятора, однако так никогда не делают. Намного эффективнее работает фильтр Найквиста. Структурная схема квадратурного модулятора сигнала QPSK, построенная с использованием фильтра Найквиста приведена на рисунке 4.

Рисунок 4. Структурная схема модулятора QPSK с использованием фильтра Найквиста


Фильтр Найквиста можно реализовать только с использованием цифровой техники, поэтому в схеме, приведенной на рисунке 17, перед квадратурным модулятором предусмотрен цифро-аналоговый преобразователь (ЦАП). Особенностью работы фильтра Найквиста является то, что в промежутках между отсчетными точками сигнал на его входе должен отсутствовать, поэтому на его входе стоит формирователь импульсов, выдающий сигнал на свой выход только в момент отсчетных точек. Все остальное время на его выходе присутствует нулевой сигнал.

Пример формы передаваемого цифрового сигнала на выходе фильтра Найквиста приведен на рисунке 5.

Рисунок 5. Пример временной диаграммы сигнала Q при четырехпозиционной фазовой модуляции QPSK


Так как для сужения спектра радиосигнала в передающем устройстве используется фильтр Найквиста, то межсимвольные искажения в сигнале отсутствуют только в сигнальных точках. Это отчетливо видно по глазковой диаграмме сигнала Q, приведенной на рисунке 6.


Кроме сужения спектра сигнала, применение фильтра Найквиста приводит к изменению амплитуды формируемого сигнала. В промежутках между отсчетными точками сигнала амплитуда может, как возрастать по отношению к номинальному значению, так и уменьшаться почти до нулевого значения.

Для того чтобы отследить изменения, как амплитуды сигнала QPSK, так и его фазы лучше воспользоваться векторной диаграммой. Векторная диаграмма того же самого сигнала, что приведен на рисунках 5 и 6, показана на рисунке 7.

Рисунок 7 векторная диаграмма QPSK сигнала c a = 0.6


Изменение амплитуды сигнала QPSK видно и на осциллограмме сигнала QPSK на выходе модулятора. Наиболее характерный участок временной диаграммы сигнала, приведенного на рисунках 6 и 7, показан на рисунке 8. На этом рисунке отчетливо видны как провалы амплитуды несущей модулированного сигнала, так и увеличение ее значения относительно номинального уровня.

Рисунок 8. временная диаграмма QPSK сигнала c a = 0.6


Сигналы на рисунках 5 ... 8 приведены для случая использования фильтра Найквиста с коэффициентом скругления a = 0.6. При использовании фильтра Найквиста с меньшим значением этого коэффициента влияние боковых лепестков импульсной характеристики фильтра Найквиста будет сказываться сильнее и явно прослеживающиеся на рисунках 6 и 7 четыре пути прохождения сигналов сольются в одну непрерывную зону. Кроме того, возрастут выбросы амплитуды сигнала относительно номинального значения.

Рисунок 9 – спектрограмма QPSK сигнала c a = 0.6


Присутствие амплитудной модуляции сигнала приводит к тому, что в системах связи, использующих этот вид модуляции, приходится использовать высоколинейный усилитель мощности. К сожалению, такие усилители мощности обладают низким кпд.

Частотная модуляция с минимальным разносом частот MSK позволяет уменьшить ширину полосы частот, занимаемых цифровым радиосигналом в эфире. Однако даже этот вид модуляции не удовлетворяет всем требованиям, предъявляемым к современным радиосистемам мобильной связи. Обычно сигнал MSK в радиопередатчике дофильтровывают обычным фильтром. Именно поэтому появился еще один вид модуляции с еще более узким спектром радиочастот в эфире.


Перспективные способы модуляции в широкополосных системах передачи данных

Сегодня специалистов в области коммуникаций уже не удивишь загадочным словосочетанием Spread Spectrum. Широкополосные (а именно они и скрываются за этими словами) системы передачи данных отличаются друг от друга способом и скоростью передачи данных, типом модуляции, дальностью передачи, сервисными возможностями и др. В предлагаемой статье предпринята попытка классифицировать широкополосные системы на основе используемой в них модуляции.

Основные положения

Широкополосные системы передачи данных (ШСПД) подчиняются в части протоколов единому стандарту IEEE 802.11, а в радиочастотной части - единым правилам FCC (Федеральной комиссии США по связи). Однако при этом они отличаются друг от друга способом и скоростью передачи данных, типом модуляции, дальностью передачи, сервисными возможностями и так далее.

Все эти характеристики играют важное значение при выборе ШСПД (потенциальным покупателем), и элементной базы (разработчиком, производителем систем связи). В настоящем обзоре предпринята попытка классифицировать ШСПД на основе наименее освещенной в технической литературе характеристики, а именно их модуляции.

Используя различные типы дополнительных модуляций, применяемых совместно с фазовой (BPSK) и квадратурной фазовой модуляцией (QPSK) для увеличения информационной скорости при передаче широкополосных сигналов в диапазоне 2,4 ГГц, можно достичь скорости передачи информации до 11 Мбит/с, принимая во внимание ограничения, накладываемые FCC на работу в этом диапазоне. Поскольку предполагается, что широкополосные сигналы будут передаваться без получения лицензии на частотный диапазон, то характеристики сигналов ограничиваются для уменьшения взаимной интерференции.

Данными типами модуляции являются различные формы М-ичной ортогональной модуляции (MOK), фазоимпульсная модуляция (PPM), квадратурная амплитудная модуляция (QAM). К широкополосным можно отнести также сигналы, получаемые при одновременной работе по нескольким параллельным каналам, разделяемым по частоте (FDMA) и/или по времени (TDMA). В зависимости от конкретных условий выбирается тот или иной тип модуляции.

Выбор типа модуляции

Основная задача любой системы связи - передача информации от источника сообщения к потребителю наиболее экономичным образом. Поэтому выбирают такой тип модуляции, который сводит к минимуму действие помех и искажений, достигая тем самым максимальной информационной скорости и минимального коэффициента ошибок. Рассматриваемые типы модуляции отбирались по нескольким критериям: устойчивость к многолучевому распространению; интерференция; количество доступных каналов; требования к линейности усилителей мощности; достижимая дальность передачи и сложность реализации.

DSSS-модуляция

Большинство из представленных в обзоре типов модуляции основаны на широкополосных сигналах, получаемых методом прямой последовательности (DSSS), - классических широкополосных сигналах. В системах с DSSS расширение спектра сигнала в несколько раз позволяет во столько же раз уменьшить спектральную плотность мощности сигнала. Расширение спектра обычно осуществляется путем умножения сравнительно узкополосного сигнала данных на широкополосный расширяющий сигнал. Расширяющий сигнал или расширяющий код часто называется шумоподобным кодом, или PN(pseudonoise)-кодом. Принцип описанного расширения спектра показан на рис. 1.

Bit period - период следования информационного бита
Сhip period - период следования чипа
Data signal - данные
PN-code - шумоподобный код
Coded signal - широкополосный сигнал
DSSS/MOK-модуляция

Широкополосные сигналы, получаемые методом прямой последовательности, с М-ичной ортогональной модуляцией (или кратко MOK-модуляция) известны уже давно, но на аналоговых компонентах их довольно трудно реализовать. Применяя цифровые микросхемы, сегодня можно использовать уникальные свойства этой модуляции.

Разновидностью MOK является М-ичная двуортогональная модуляция (MBOK). Увеличение информационной скорости достигается за счет применения одновременно нескольких ортогональных PN-кодов при сохранении той же частоты следования чипов и формы спектра. MBOK-модуляция эффективно использует энергию спектра, то есть имеет достаточно высокое отношение скорости передачи к энергии сигнала. Она устойчива к интерференции и многолучевому распространению.

Из приведенной на рис. 2 схемы MBOK-модуляции совместно с QPSK видно, что PN-код выбирается из M-ортогональных векторов в соответствии с управляющим байтом данных. Так как I- и Q-каналы являются ортогональными, то они одновременно могут подвергаться MBOK. При двуортогональной модуляции используются и инвертированные векторы, что позволяет увеличить информационную скорость. Наибольшее распространение получило множество истинно ортогональных векторов Уолша с размерностью вектора кратной 2. Таким образом, применяя в качестве PN-кодов систему векторов Уолша с размерностью вектора 8 и QPSK, при скорости следования 11 мегачипов в секунду в полном соответствии со стандартом IEEE 802.11, можно в каждом канальном символе передавать 8 бит, получив скорость в канале 1,375 мегасимволов в секунду и информационную скорость 11 Мбит/с.

Модуляция позволяет достаточно просто организовать совместную работу с широкополосными системами, работающими со стандартной скоростью следования чипов и использующими только QPSK. В этом случае передача заголовка кадра происходит со скоростью в 8 раз меньшей (в каждом конкретном случае), что позволяет менее скоростной системе корректно воспринять этот заголовок. Затем происходит увеличение скорости передачи данных.
1. Входные данные
2. Скремблер
3. Мультиплексор 1:8
4. Выбор одной из 8 функций Уолша
5. Выбор одной из 8 функций Уолша
6. Выход I-канала
7. Выход Q-канала

Теоретически MBOK имеет несколько меньший коэффициент ошибок (BER) по сравнению с BPSK при том же самом отношении Eb/N0 (из-за свойств кодирования), что делает эту модуляцию наиболее эффективной по использованию энергии сигнала. В BPSK каждый бит обрабатывается независимо от другого, в MBOK распознается символ. Если он распознан неправильно, то это не значит, что все биты этого символа приняты ошибочно. Таким образом, вероятность принятия ошибочного символа не равна вероятности принятия ошибочного бита.

Спектр MBOK модулированных сигналов соответствует установленному в стандарте IEEE 802.11. В настоящее время фирма Aironet Wireless Communications, Inc. предлагает беспроводные мосты для сетей Ethernet и Token Ring, использующие технологию DSSS/MBOK и передающие информацию в эфир со скоростью до 4 Мбит/с.

Устойчивость к многолучевому распространению зависит от соотношения Eb/N0 и фазовых искажений сигнала. Численное моделирование передачи широкополосных сигналов с MBOK модуляцией, проведенное инженерами Harris Semiconductor внутри зданий подтвердило, что такие сигналы достаточно устойчивы к этим мешающим факторам1. См.: Andren C. 11 MBps Modulation Techniques // Информационный бюллетень Harris Semiconductor. 05/05/98.

На рис. 3 представлены графики зависимости вероятности принятия ошибочного кадра данных (PER) от расстояния при излучаемой мощности сигнала 15 дБ/МВт (для 5,5 Мбит/с - 20 дБ/МВт), полученные в результате численного моделирования, для различных информационных скоростей передачи данных.

Моделирование показывает, что с увеличением Es/N0, необходимого для надежного распознавания символа, существенно увеличивается PER в условиях сильного переотражения сигнала. Для устранения этого можно применять согласованный прием несколькими антеннами. На рис. 4 представлены результаты для данного случая. При оптимальном согласованном приеме PER будет равен квадрату PER несогласованного приема. При рассмотрении рис. 3 и 4 необходимо помнить, что при PER=15% фактическая потеря в информационной скорости составит 30% вследствие необходимости повторной передачи сбойных пакетов.

Необходимым условием применения QPSK совместно с MBOK является когерентная обработка сигнала. На практике это достигается приемом преамбулы и заголовка кадра с использованием BPSK для настройки фазовой петли обратной связи. Однако все это, как и использование последовательных корреляторов для когерентной обработки сигнала, увеличивает сложность демодулятора.

CCSK-модуляция

Широкополосные сигналы, получаемые методом прямой последовательности с М-ичной ортогональной модуляцией и модуляцией циклическими кодами, (CCSK) проще демодулировать по сравнению с MBOK, поскольку используется только один PN-код. Этот тип модуляции возникает вследствие временного сдвига корреляционного пика внутри символа. Применяя код Баркера длиной 11 и скоростью 1 мегасимвол в секунду, можно сдвигать пик в одну из восьми позиций. Оставшиеся 3 позиции не позволяют их использовать для увеличения информационной скорости. Таким способом можно передавать три информационных бита на символ. Добавляя BPSK, можно передать еще один информационный бит на символ, то есть всего 4. В итоге с помощью QPSK получим 8 информационных бит на канальный символ.

Основной проблемой для PPM и CCSK является чувствительность к многолучевому распространению, когда задержка между переотражениями сигнала превышает длительность PN-кода. Поэтому внутри помещений с такими переотражениями эти типы модуляций трудно использовать. CCSK довольно просто демодулировать и при этом нужно лишь слегка усложнить традиционную схему модулятора/демодулятора. Схема CCSK аналогична схеме MBOK модуляции совместно с QPSK (см. рис. 2), только вместо блока выбора одной из 8 функций Уолша имеется блок сдвига слова.

DSSS/PPM-модуляция

Широкополосные сигналы, получаемые методом прямой последовательности с фазоимпульсной модуляцией (DSSS/ PPM), - это тип сигналов, являющийся дальнейшим развитием сигналов с расширением спектра методом прямой последовательности.

Идея фазоимпульсной модуляции для обычных широкополосных сигналов заключается в том, что прибавка в информационной скорости получается за счет изменения интервала времени между корреляционными пиками последовательных символов. Модуляция была изобретена Rajeev Krishnamoorthy и Israel Bar-David в лаборатории Белла в Нидерландах.

Текущие реализации модуляции позволяют определить восемь временных положений корреляционных импульсов в интервале следования символа (внутри интервала следования PN-последовательности). Если такая технология применяется независимо на I- и Q-каналах в DQPSK, то получается 64 (8х8) различных информационных состояний. Объединяя фазоимпульсную модуляцию с DQPSK-модуляцией, обеспечивающей два различных состояния в I-канале и два различных состояния в Q-канале, получают 256 (64х2х2) состояний, что эквивалентно 8 информационным битам на символ.

DSSS/QAM-модуляция

Широкополосные сигналы, получаемые методом прямой последовательности, с квадратурной амплитудной модуляцией (DSSS/QAM) можно представлять как классические широкополосные сигналы с DQPSK-модуляцией, в которых информация передается еще и через изменение амплитуды. Применяя двухуровневую амплитудную модуляцию и DQPSK, получают 4 различных состояния в I-канале и 4 различных состояния в Q-канале. Модулированный сигнал можно подвергнуть еще и фазоимпульсной модуляции, что позволит увеличить информационную скорость.

Одним из ограничений применения DSSS/QAM является то, что сигналы с такой модуляцией довольно чувствительны к многолучевому распространению. Также вследствие применения одновременно и фазовой и амплитудной модуляции увеличивается соотношение Eb/N0 для получения того же значения BER, что и для MBOK.

Чтобы уменьшить чувствительность к искажениям, можно использовать эквалайзер. Но его применение нежелательно по двум причинам.

Во-первых, при этом необходимо увеличивать последовательность символов, настраивающую эквалайзер, что в свою очередь увеличивает длину преамбулы. Во-вторых, с добавлением эквалайзера возрастет стоимость системы в целом.

Дополнительная квадратурная модуляция может использоваться и в системах с Frequency Hopping. Так, фирма WaveAccess выпустила модем с торговой маркой Jaguar, который использует технологию Frequency Hopping, модуляцию QPSK совместно с 16QAM. В отличие от общепринятой в этом случае частотной FSK-модуляции это позволяет обеспечить реальную скорость передачи данных 2,2 Мбит/с. Инженеры фирмы WaveAccess считают, что применение технологии DSSS с более высокими скоростями (до 10 Мбит/с) нецелесообразно из-за незначительной дальности передачи (не более 100 м).

OCDM-модуляция

В широкополосных сигналах, получаемых мультиплексированием нескольких широкополосных сигналов с ортогональным кодовым уплотнением (Orthogonal Code Division Multiplex - OCDM), используется одновременно несколько широкополосных каналов на одной частоте.

Каналы разделяются за счет применения ортогональных PN-кодов. Фирма Sharp анонсировала 10-мегабитный модем, построенный по этой технологии. Фактически одновременно передаются 16 каналов с 16-чиповыми ортогональными кодами. В каждом канале применяется BPSK, затем каналы суммируются аналоговым методом.

Data Mux - мультиплексор входных данных

BPSK - блок фазовой модуляции

Spread - блок расширения спектра методом прямой последовательности

Sum - выходной сумматор

OFDM-модуляция

Широкополосные сигналы, получаемые мультиплексированием нескольких широкополосных сигналов с ортогональным частотным уплотнением (Оrthogonal Frequency Division Multiplex - OFDM), представляют собой одновременную передачу на разных несущих частотах сигналов с фазовой модуляцией. Модуляция описана в стандарте MIL-STD 188C. Одним из ее преимуществ является высокая устойчивость к провалам в спектре, возникающим вследствие многолучевого затухания. Узкополосное затухание может исключить одну или более несущих. Надежное соединение обеспечивается распределением энергии символа на несколько частот.

Это превышает спектральную эффективность аналогичной QPSK-системы в 2,5 раза. Существуют готовые микросхемы, реализующие OFDM-модуляцию. В частности, фирма Motorola выпускает OFDM-демодулятор МС92308 и "front-end" чип для OFDM МС92309. Схема типичного модулятора OFDM приведена на рис. 6.

Data mux - мультиплексор входных данных

Channel - частотный канал

BPSK - блок фазовой модуляции

Sum - сумматор частотных каналов

Заключение

В сравнительной таблице приведены оценки каждого типа модуляции по различным критериям и итоговая оценка. Меньшая оценка соответствует лучшему показателю. Квадратурная амплитудная модуляция берется лишь для сравнения.

При рассмотрении были отброшены различные типы модуляций, имеющие неприемлемые значения оценок различных показателей. Например, широкополосные сигналы с 16-позиционной фазовой модуляцией (PSK) - вследствие плохой устойчивости к интерференции, очень широкополосные сигналы - вследствие ограничений на протяженность частотного диапазона и необходимости иметь, как минимум, три канала для совместной работы расположенных рядом радиосетей.

Среди рассмотренных типов широкополосной модуляции наиболее интересной является М-ичная двуортогональная модуляция - MBOK.

В заключение хотелось бы отметить модуляцию, которая не вошла в серию экспериментов, проведенных инженерами Harris Semiconductor. Речь идет о фильтрованной QPSK-модуляции (Filtered Quadrature Phase Shift Keying - FQPSK). Данная модуляция была разработана профессором Kamilo Feher из Калифорнийского университета и запатентована совместно с фирмой Didcom, Inc.

Для получения FQPSK применяют нелинейную фильтрацию спектра сигнала в передатчике с последующим восстановлением его в приемнике. В результате спектр FQPSK занимает примерно в два раза меньшую площадь по сравнению со спектром QPSK при прочих равных параметрах. Кроме того, PER (коэффициент ошибок при передаче пакетов) FQPSK лучше аналогичного параметра у GMSK на 10-2-10-4. GSMK - это гауссовская частотная модуляция, используемая, в частности, в стандарте цифровой сотовой связи GSM. Новую модуляцию в достаточной мере оценили и применяют в своих изделиях такие компании, как EIP Microwave, Lockheed Martin, L-3 Communications, а также NASA.

Нельзя однозначно сказать, какая именно модуляция будет использоваться в ШСПД XXI века. С каждым годом в мире растет количество информации, следовательно, все больше информации будет передаваться по каналам связи. Поскольку частотный спектр представляет собой уникальный природный ресурс, то требования к спектру, используемому системой передачи, будут непрерывно расти. Поэтому выбор наиболее эффективного способа модуляции при разработке ШСПД продолжает оставаться одним из важнейших вопросов.

Квадратурная модуляция и ее характеристики (QPSK, QAM)

Рассмотрим квадратурную фазовую манипуляцию (QPSK). Исходный поток данных dk(t)=d0, d1, d2,… состоит из биполярных импульсов, т.е. dk принимают значения +1 или -1 (рис. 3.5.а)), представляющие двоичную единицу и двоичный нуль. Этот поток импульсов разделяется на синфазный поток dI(t) и квадратурный - dQ(t), как показано на рис. 3.5.б).

dI(t)=d0, d2, d4,… (четные биты)

dQ(t)=d1, d3, d5,… (нечетные биты)

Удобную ортогональную реализацию сигнала QPSK можно получить, используя амплитудную модуляцию синфазного и квадратурного потоков на синусной и косинусной функциях несущей.

С помощью тригонометрических тождеств s(t) можно представить в следующем виде: s(t)=cos(2рf0t+и(t)). Модулятор QPSK, показанный на рис. 3.5.в), использует сумму синусоидального и косинусоидального слагаемых. Поток импульсов dI(t) используется для амплитудной модуляции (с амплитудой +1 или -1) косинусоиды.

Это равноценно сдвигу фазы косинусоиды на 0 или р; следовательно, в результате получаем сигнал BPSK. Аналогично поток импульсов dQ(t) модулирует синусоиду, что дает сигнал BPSK, ортогональный предыдущему. При суммировании этих двух ортогональных компонентов несущей получается сигнал QPSK. Величина и(t) будет соответствовать одному из четырех возможных сочетаний dI(t) и dQ(t) в выражении для s(t): и(t)=00, ±900 или 1800; результирующие векторы сигналов показаны в сигнальном пространстве на рис. 3.6. Так как cos(2рf0t) и sin(2рf0t) ортогональны, два сигнала BPSK можно обнаруживать раздельно. QPSK обладает рядом преимуществ перед BPSK: т.к. при модуляции QPSK один импульс передает два бита, то в два раза повышается скорость передачи данных или при той же скорости передачи данных, что и в схеме BPSK, используется в два раза меньшая полоса частот; а так же повышается помехоустойчивость, т.к. импульсы в два раза длиннее, а следовательно и больше по мощности, чем импульсы BPSK.



Рис. 3.5.

Рис. 3.6.

Квадратурную амплитудную модуляцию (KAM, QAM) можно считать логическим продолжением QPSK, поскольку сигнал QAM также состоит из двух независимых амплитудно-модулированных несущих.

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество кодируемых бит и при этом существенно повысить помехоустойчивость. Квадратурное представление сигналов является удобным и достаточно универсальным средством их описания. Квадратурное представление заключается в выражении колебания линейной комбинацией двух ортогональных составляющих - синусоидальной и косинусоидальной (синфазной и квадратурной):

s(t)=A(t)cos(щt + ц(t))=x(t)sinщt + y(t)cosщt, где

x(t)=A(t)(-sinц(t)),y(t)=A(t)cosц(t)

Такая дискретная модуляция (манипуляция) осуществляется по двум каналам, на несущих, сдвинутых на 900 друг относительно друга, т.е. находящихся в квадратуре (отсюда и название).

Поясним работу квадратурной схемы на примере формирования сигналов четырехфазной ФМ (ФМ-4) (рис. 3.7).


Рис. 3.7.

Рис. 3.8. 16

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы y, которые подаются в квадратурный канал (cosщt), и четные - x, поступающие в синфазный канал (sinщt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулированных импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t) с амплитудой ±Um и длительностью 2T. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные (0, р) ФМ колебания. После суммирования они образуют сигнал ФМ-4.

На рис. 3.8. показано двухмерное пространство сигналов и набор векторов сигналов, модулированных 16-ричной QAM и изображенных точками, которые расположены в виде прямоугольной совокупности.

Из рис. 3.8. видно, что расстояние между векторами сигналов в сигнальном пространстве при QAM больше, чем при QPSK, следовательно, QAM является более помехоустойчивой по сравнению с QPSK,