Благоустрой... Вредители Выращивание 

Схемы частотомера на жк индикаторе. Схема частотомера на микроконтроллере с PIC16F628A. Описание. Описание работы прибора в разных режимах

В этой статье описано как подключить жидкокристаллический индикатор со знакогенератором к микроконтроллеру. Рассмотренные здесь методы и схемы подходят для подключения ЖКИ со встроенными контроллерами HD44780 (Hitachi), KS0070, KS0066 (Samsung), LC7985 (Sanyo), SED1278 (Epson) или с другими аналогичными. Эти, или совместимые с ними, контроллеры используются в большинстве выпускаемых в настоящий момент знакосинтезирующих ЖКИ, например, в таких, как ACM0802, ACM1601, ACM1602, ACM1604, ACM2002, ACM2004, ACM2402, ACM4002, ACM4004 фирмы Displaytronic, MT-10S1, MT-16S2D фирмы МЭЛТ, DV-0802, DV-16100, DV-16110, DV-16120, DV-16210, DV-16230, DV-16235, DV-16236, DV-16244, DV-16252, DV-16257, DV-16275, DV-16276, DV-20100, DV-20200, DV-20210, DV-20211, DV-20220, DV-24200, DV-40200 фирмы Data Vision, AC082A, AC161, AC162, AC164, AC202, AD202, AC204, AC242, AD242, AC402 фирмы Ampire.

Вообще, данная задача сводится к организации обмена данными между подключаемым контроллером и встроенным контроллером ЖКИ, потому что самой матрицей управляет именно встроенный контроллер. В дальнейшем, когда мы будем говорить о подключении к ЖКИ, следует понимать, что речь идет о подключении к встроенному контроллеру. Перечисленные выше контроллеры ЖКИ имеют аналогичные интерфейсы, наборы команд и распределение памяти, хотя размер встроенной ROM-памяти, последовательность команд инициализации, время выполнения команд и некоторые другие параметры могут несколько отличаться.

Итак, для начала, давайте разберемся с работой ЖКИ.

1) Интерфейс .

Обычно ЖКИ имеет 14 или 16 выводов, назначение которых представлено в таблице 1:

ТАБЛИЦА 1

номер контакта наименование описание
1 Vss GND — общий провод (земля)
2 Vdd Power supply — питание +5В
3 Vo контраст
4 RS Register select — выбор регистра
5 R/W Read/write — чтение/запись
6 E Enable — вкл/выкл передачи
7 DB0 Data bit 0
8 DB1 Data bit 1
9 DB2 Data bit 2
10 DB3 Data bit 3
11 DB4 Data bit 4
12 DB5 Data bit 5
13 DB6 Data bit 6
14 DB7 Data bit 7
15 BL+ питание подсветки
16 BL- общий провод подсветки

Таким образом, интерфейс имеет восемь информационных линий: DB7..DB0 и три управляющих: RS, R/W, E.

Линия RS определяет к какому регистру контроллера ЖКИ мы хотим обратиться, то есть какую информацию мы передаем — данные или команды.

Линия R/W определяет направление передачи данных — запись в ЖКИ или чтение из ЖКИ.

Линия E включает (когда на линии высокий уровень) или выключает (когда на линии низкий уровень) передачу информации, сформированной на остальных интерфейсных линиях.

Интерфейс работает следующим образом: сначала на интерфейсных линиях DB7…DB0, RS, R/W формируется информация, которую нужно передать, потом на некоторое время (>500 нс для f 0 =270 кГц) подается высокий уровень на линию E (в это время ЖКИ считывает информацию), после чего сигнал E переводится опять в состояние низкого уровня. f 0 — частота, на которой работает контроллер ЖКИ. Вообще, контроллеры ЖКИ могут работать на разных частотах (у них есть выводы для подключения внешнего резонатора), но обычно используется внутренний генератор на 270 кГц.

После получения каждой порции информации контроллеру ЖКИ требуется некоторое время для ее обработки, поэтому передавать информацию подряд нельзя. После каждой посылки требуется подождать некоторое время, чтобы контроллер ЖКИ освободился. Обычно в даташите указано, какой команде сколько времени требуется для выполнения. Также, в контроллере ЖКИ предусмотрена возможность сообщить внешнему устройству о своем состоянии (BUSY/READY). То есть, при передаче данных, можно либо анализировать состояние контроллера ЖКИ и посылать следующую порцию данных, как только контроллер ЖКИ освободится, либо просто выждать время, большее, чем время выполнения операции по даташиту, после чего посылать следующую порцию данных.

Для уменьшения количества проводов от ЖКИ к внешнему устройству можно использовать не 8, а 4 информационных сигнала (DB7…DB4). Все рассматриваемые контроллеры ЖКИ допускают такую возможность. В этом случае данные передаются в два этапа (кроме первой команды инициализации): 1) передаются управляющие биты и старший полубайт посылки 2) передаются управляющие биты и младший полубайт посылки.

Первое, что нужно сделать после включения ЖКИ — это провести инициализацию. Инициализация заключается в посылке нескольких команд в определенной последовательности. Количество команд инициализации может несколько отличаться у разных контроллеров, но все же базовый набор команд для восьми- и четырехбитного интерфейсов, подходящий для большинства контроллеров, приведен ниже.

Во время инициализации лучше не анализировать флаг BUSY, а тупо ждать положенное время перед посылкой следующей команды, так как флаг начинает выставляться не сразу, а после какой-то команды (смотрите даташит).

Инициализация для восьмибитного интерфейса (f 0 =270 кГц)

1) включение питания

2) пауза >30 мс

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 1 1 N F X X

4) пауза >39 мкс

5) DISPLAY ON/OFF CONTROL

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 0 0 1 D C B

6) пауза >39 мкс

7) DISPLAY CLEAR

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 0 0 0 0 0 1

8) Пауза >1.53 мс

9) ENTRY MODE SET

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 0 0 0 0 0 1 I/D SH

Инициализация для четырехбитного интерфейса (f 0 =270 кГц)

1) включение питания

2) пауза >30 мс

RS R/W DB7 DB6 DB5 DB4
0 0 0 0 1 0
0 0 0 0 1 0
0 0 N F X X

N=0 — однострочный дисплей, N=1 — двустрочный дисплей

F=0 — шрифт 5х8, F=1 — шрифт 5х11

4) пауза >39 мкс

5) DISPLAY ON/OFF CONTROL

RS R/W DB7 DB6 DB5 DB4
0 0 0 0 0 0
0 0 1 D C B

D=0 — дисплей выключен, D=1 — дисплей включен

C=0 — курсор выключен, C=1 — курсор включен

B=0 — мерцание выключено, B=1 — мерцание включено

6) пауза >39 мкс

7) DISPLAY CLEAR

RS R/W DB7 DB6 DB5 DB4
0 0 0 0 0 0
0 0 0 0 0 1

8) Пауза >1.53 мс

9) ENTRY MODE SET

RS R/W DB7 DB6 DB5 DB4
0 0 0 0 0 0
0 0 0 1 I/D SH

I/D=0 — уменьшение указателя при операции с памятью, I/D=1 — увеличение указателя при операции с памятью

SH=0 — сдвигание дисплея выключено, SH=1 — сдвигание дисплея включено

2) Память

В ЖКИ есть 2 вида памяти: DDRAM, CGRAM (CGROM).

DDRAM — display data RAM (память дисплея) — то, что записано в этой памяти, — непосредственно отображается на дисплее. Эта память имеет следующее адресное пространство и соответственное отображение на дисплее (для дисплея 24х2):

Первая строка

Display position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DDRAM address 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h

Вторая строка

Display position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DDRAM address 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h 54h 55h 56h 57h

То есть, то, что записано в DDRAM по адресу, например, 42h, будет отображаться в третьей позиции на второй строке дисплея. Для дисплеев других размеров доступное адресное пространство DDRAM будет другим (обычно первые 40h адресов — первая строка, вторые 40h адресов — вторая строка и т.д.)

CGRAM (CGROM) — character generator RAM (ROM) — память знакогенератора. Память знакогенератора разделена на CGRAM — доступна для записи/чтения, сюда можно залить 8 своих собственных символов и CGROM — доступна только для чтения, заранее прошитые шрифты. В разных ЖКИ могут быть прошиты разные шрифты, это надо смотреть по доке или можно определить самому, организовав вывод на дисплей последовательно всех прошитых символов.

При обращении к первым шестнадцати символам знакогенератора происходит обращение к CGRAM, при обращении к символам, с номерами старше шестнадцатого — обращение к CGROM. Причем, пользовательских символов ведь всего 8, поэтому первые восемь символов знакогенератора указывают на те же области CGRAM, что и вторые восемь символов.

Иногда, в CGROM могут быть прошиты не все символы, начиная с семнадцатого, а, например, начиная с номера 21h, а при обращении к символам от 10h до 21h на дисплей выводится всякий мусор. Это зависит от прошивки.

Для вывода на экран какого-либо символа, необходимо выполнить следующие действия:

1) установить курсор командой "set DDRAM address" в ту позицию, куда мы хотели бы вывести символ (информационные биты указывают адрес DDRAM, соответствующий выбранной позиции)

SET DDRAM ADDRESS (AC6…AC0 — адрес устанавливаемой позиции курсора в памяти дисплея)

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 1 AC6 AC5 AC4 AC3 AC2 AC1 AC0

2) вывести символ на экран командой "write data to RAM", при этом информационные биты указывают на номер символа, выводимого из CGRAM/CGROM.

WRITE DATA TO RAM (A7..A0 — номер символа, выводимого из памяти знакогенератора)

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1 0 A7 A6 A5 A4 A3 A2 A1 A0

Полный список команд для работы с ЖКИ и время их выполнения можно узнать, скачав даташит на любой из рассматриваемых ЖКИ-контроллеров (все они имеют одинаковые наборы команд).

Разобравшись с работой ЖКИ, вернемся к вопросу его подключения к микроконтроллеру. В качестве примера возьмем контроллер PIC16F628A. Ниже показаны примеры схем подключения для восьмибитного и четырехбитного интерфейсов. Подключение подсветки на схемах не показано, поскольку полярность подключения подсветки, иногда, определяется перемычками на плате ЖКИ.

Вот и всё! Для того, чтобы схемы заработали, осталось только залить в микроконтроллер программу, реализующую обмен данными с ЖК-индикатором.

Пример готового девайса (8-битный интерфейс, ЖКИ — PM1623):

Примеры программ и готовые прошивки:

Скачать печатную плату (AutoCAD2000i) Эта плата разведена под использование SMD компонентов. Если вы будете использовать другие компоненты, то плату придется переделывать.

  • 28.09.2014

    Данный приемник работает в диапазоне 64-75 МГц и имеет реальную чувствительность 6 мкВ, выходную мощность 4 Вт, диапазон ЗЧ — 70…10000Гц, КНИ не более 1 %. При этих параметрах приемник имеет размеры 60*70*25 мм. Приемный тракт собран на КС1066ХА1(К174ХА42) по стандартной схеме. Антенна — провод длиной около метра, сигнал от …

  • 29.09.2014

    Схема выполнена на двух микросхемах ТВА1208. В основе лежит схема трансивера, напечатанная в Л,1, но этот тракт работает с промежуточной частотой 500 кГц, что, конечно несколько снижает eгo характеристики, но позволяет использовать готовый, нacтpoeнный на заводе электромеханический фильтр. Микросхемы ТВА1208 предназначены для работы в тракте второй ПЧ3 телевизоров, В них …

  • 20.09.2014

    Классификация магнитных материалов Магнитные материалы находят самое широкое распространение в электротехнике, без них в настоящее время немыслимы электрические машины, трансформаторы, электроизмерительные приборы. В зависимости от применения к магнитным материалам предъявляются различные, подчас противоположные, требования. По признаку применения магнитные материалы классифицируются на две большие группы: магнитомягкие магнитотвердые Рассмотрим кратко их характеристики. …

  • 10.12.2017

    На рисунке показана схема простого высоко чувствительного акустического выключателя, который управляет нагрузкой при помощи реле. В схеме используется электретный микрофон, при использовании ECM микрофона необходимо использовать резистор R1 сопротивление от 2,2 кОм до 10 кОм. Первые два транзистора представляют собой предварительный микрофонный усилитель, R4 С7 в схеме устраняют нестабильность усилителя. …

Частотомер на PIC16F628

Измеритель частоты - очень востребованное устройство. Известные схемы частотомеров на счётчиках весьма громоздки, в то время, как подобное устройство можно сделать весьма компактным и экономичным, применив микроконтроллер и ЖК-дисплей.

Предлагаемая схема частотомера на микроконтроллере PIC16F628A - одна из самых простых, с учётом того, что заявленные параметры весьма впечатляют: диапазон измеряемых частот от 1Гц до 60МГц.


Как сообщает автор, прошивка была переделана с другого микроконтроллера на PIC16F628. Однако, мало кому удалось добиться работы частотомера с оригинальной прошивкой. При её исследовании стало понятно, что причина кроется в порту RB6, что было исправлено, и новая прошивка работает отлично.
нажмите для увеличения):


Прошивка микроконтроллера PIC16F628A от Дмитрия Мухамеджанова: frequency.hex
Для программирования микроконтроллера можно использовать универсальный программатор .

Мы упростили входную часть частотомера, это изменение отмечено на схеме красным цветом. Оригинальная часть на схеме также сохранена.

При монтаже устройства в корпус удобно использовать плоский кабель для подключения частотомера к ЖК-дисплею. Такой кабель можно изготовить самостоятельно. Для изготовления берётся отрезок шлейфа FDD или HDD нужной длины, концы проводов зачищаются и залуживаются, к ним припаивается подходящий разъём. Здесь можно использовать не только разъёмы предназначенные для пайки на кабель, но и для установки на плату: их легко паять.

Место пайки шлейфа к разъёму наиболее сильно подвержено механическим воздействиям, поэтому его нужно защитить от сгибаний и повреждений. Для этого достаточно любого густого клея.

Одним из приборов-помощников радиолюбителя должен быть частотомер. С его помощью легко обнаружить неисправность генератора, измерить и подстроить частоту. Генераторы очень часто встречаются в схемах. Это приемники и передатчики, часы и частотомеры, металлоискатели и различные автоматы световых эффектов…

Особенно удобно пользоваться частотомером для подстройки частоты, например при перестройки радиостанций, приёмников или настройки металлоискателя.

Один из таких несложных наборов я недорого приобрёл на сайте китайского магазина здесь: GEARBEST.com

Набор содержит:

  • 1 x PCB board (печатная плата);
  • 1 x микроконтроллер PIC16F628A;
  • 9 x 1 кОм резистор;
  • 2 x 10 кОм резистор;
  • 1 x 100 кОм резистор;
  • 4 x диоды;
  • 3 x транзисторы S9014, 7550, S9018;
  • 4 x конденсаторы;
  • 1 x переменный конденсатор;
  • 1 x кнопка;
  • 1 x DC разъём;
  • 1 x 20МГц кварц;
  • 5 x цифровые индикаторы.

Описание частотомера

  • Диапазон измеряемых частот: от 1 Гц до 50 МГц;
  • Позволяет измерять частоты кварцевых резонаторов;
  • Точность разрешение 5 (например 0,0050 кГц; 4,5765 МГц; 11,059 МГц);
  • Автоматическое переключение диапазонов измерения частоты;
  • Режим энергосбережения (если нет изменения показаний частоты — автоматически выключается дисплей и на короткое время включается;
  • Для питания Вы можете использовать интерфейс USB или внешний источник питания от 5 до 9 В;
  • Потребляемый ток в режиме ожидания — 11 мА

Схема содержит небольшое количество элементов. Установка проста — все компоненты впаиваются согласно надписям на печатной плате.

Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой. Индикаторы, микросхема и её панелька для исключения повреждений ножек вставлены в пенопласт.

Принципиальная схема частотомера

Напряжение на выводах микроконтроллера

(измерения мультиметром)

Генератор для проверки кварцев

Приступаем к сборке

Высыпаем на стол содержимое пакета. Внутри находятся печатная плата, сопротивления, конденсаторы, диоды, транзисторы, разъемы, микросхема с панелькой и индикаторы.

Ну и вид на весь набор в полностью разложенном виде.

Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.

Я начинал сборку с установки пассивных элементов: резисторов, конденсаторов и разъёмов. При монтаже резисторов следует немного узнать об их цветовой маркировке из предыдущей статьи. Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет) и поэтому также посоветую просто измерить сопротивление резисторов при помощи мультиметра. И результат будем знать и за одно его исправность.

Конденсаторы маркируются также как и резисторы.
Первые две цифры - число, третья цифра - количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22 пФ.
Они маркируются просто указанием емкости так как емкость меньше 100 пФ, т.е. меньше трехзначного числа.

Резисторы и керамические конденсаторы можно впаивать любой стороной — здесь полярности нет.

Выводы резисторов и конденсаторов я загибал, чтобы компонент не выпал, лишнее откусывал, а затем опаивал паяльником.

Немного рассмотрим такой компонент, как — подстроечный конденсатор. Это конденсатор, ёмкость которого можно изменять в небольших пределах (обычно 10-50пФ). Это элемент тоже неполярный, но иногда имеет значение как его впаивать. Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. Чтобы было меньше влияния отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом, соединялся с общей шиной платы.

Разъемы — сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, плохо облуживается. Потому нужно ножки разъёмов дополнительно почистить и облудить.

Теперь впаиваем кварцевый резонатор, он изготовлен под частоту 20МГц, полярности также не имеет, но под него лучше подложить диэлектрическую шайбочку или приклеить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.

Длительность пайки каждой ножки не должна превышать 2 сек! Между пайками ножек должно пройти не менее 3 сек на остывание.

Ну вот собственно и всё!

Теперь осталось смыть остатки канифоли щёткой со спиртом.

Теперь красивее 🙂

Осталось правильно вставить микросхему в свою «кроватку» и подключить питание к схеме.

Питание должно быть В пределах от 5 до 9 В — постоянное стабилизированное без пульсаций. (В схеме нет ни одного эл.конденсатора по питанию.)

Не забудьте у микросхемы есть с торца ключ — он располагается у вывода №1! Не следует полагаться на надпись названия микросхемы — она может быть написана и к верх ногами.

При подключении питания и отсутствия сигнала на входе высвечивается 0 .

Первым делом нашёл кучу кварцев и начал проверять. Следует отметить, что частота кварца, например 32,768 кГц не может быть измерена, т.к. измерение ограничивается в диапазоне от 1 МГц.

Можно измерить, например 48 МГц, но следует иметь ввиду, что будет измерены гармонические колебания кварцевого генератора. Так 48 МГц будет измерена основная частота 16 МГц.

Подстроечным конденсатором можно подстроить показания частотомера по эталонному генератору или сравнить с заводским частотомером.

Режим программирования частотомера позволяет вычесть четыре основные запрограммированные ПЧ частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц, а также любую собственную частоту.

Таблица алгоритма програмирования

Чтобы войти в режим программирования (Prog ) нужно нажать и удерживать кнопку в течении 1-2 сек.

Затем нажимаем кнопку и поочередно пролистываем меню:

«Quit » — «Выход »: прерывает режим программирования, ничего не сохраняя.

«Add » — «Добавление »: сохранение измеренной частоты и в дальнейшем эта частота будет складываться с измеряемыми частотами.

«Sub » — «Вычитание »: сохранение измеренной частоты и в дальнейшем она будет вычитаться с измеряемыми частотами.

«Zero «- «Ноль » — обнуляет все ранее запрограммированные значения.

«table » — «Таблица «: в этой таблице можно выбрать основные запрограммированные частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц. После выбора записи (длительное нажатие), вы вернетесь в «Главное меню» и выберите пункт «Add » — «добавить » или «Sub » — «убавить «.

«PSave » / «NoPSV «: включает / отключает режим энергосбережения. Дисплей отключается если нет изменения частоты некоторое время.

Если показания сильно отличаются, то возможно включена предустановка. Чтобы её отключить войдите в режим программирования и затем нажимая кнопку выберите «Zero» и удерживайте пока не начнёт мигать, затем отпустите её.

Интересный обучающий конструктор. Собрать частотомер под силу даже начинающему радиолюбителю.

Качественно изготовленная печатная плата, прочное защитное покрытие, небольшое количество деталей благодаря программируемому микроконтроллеру.

Конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с немало важным для радиолюбителя прибором - частотомером.

Доработка частотомера

Внимание! В заключение хочется отметить, что входной измеряемый сигнал подаётся непосредственно на вход микросхемы, поэтому для лучшей чувствительности и главное, защиты микросхемы нужно добавить по входу усилитель-ограничитель сигнала.

Можно спаять один из предложенных ниже.

Сопротивление R6 на верхней и R9 на нижней схеме подбирается в зависимости от напряжения питания и устанавливается на его левом выводе 5 В. При питании 5 В сопротивление можно не ставить.

… или простой, на одном транзисторе:

Номиналы сопротивлений указаны при питании 5В. Если у Вас питание усилителя другим напряжением, то подберите номинал R2,3 чтобы на коллекторе транзистора было половина питания.

Схема похожего частотомера с входным каскадом усилителя.

Вторая доработка. Для увеличения измеряемого потолка частоты можно собрать к частотомеру делитель частоты. Например, схемы ниже:



Принципиальная схема частотомера

Микроконтроллер PIC16F628A служит для того, чтобы выполнить всю работу без каких-либо дополнительных микросхем. На 16F628A 16 I/O выводов, два из которых используются для кварцевого генератора, один предназначен для ввода сигнала, а другой может быть использован только для ввода, что дает нам только 12 полезных I/O контактов. Решение - поставить транзистор, который открывается при выключении всех других цифр.

Светодиодный 7-сегментный дисплей, используемый здесь, с общим катодом типа BC56-12SRWA. Когда все сигналы находятся на высоком уровне, транзистор Q1 открывается и переключается на первой цифре. Ток для каждого сегмента составляет около 7 мА.

Вся схема частотомера потребляет тока порядка 30 мА в среднем. Микроконтроллер использует свой внутренний 4 MHz генератор для тактирования CPU. А внешний кварцевый генератор с частотой 32768 Hz нужен для установки 1 второго временного интервала. Tmr0 используется для подсчета входного сигнала на выводе RA4.

В качестве входного сигнала нужно будет 5 вольт прямоугольного вида. Сам частотомер может измерять до 1 мегагерца, что более чем достаточно для любительских проектов. Это сделано для удобства, так как счетчик может достигать показаний 999999 Гц - и ничего переключать не нужно. Меряем хоть 11 герц, хоть 139,622 килогерц.

В общем если у кого есть желание повторить этот проект самим, вот файлы . Плата в архиве немного отличается от той, что на фотографии, были позже сделаны некоторые оптимизации. А программный код открыт - можно его при умении оптимизировать.