Благоустрой... Вредители Выращивание 

Спектральная плотность мощности сигнала. Спектральная плотность мощности детерминированного сигнала. Спектральная плотность мощности случайного процесса

Лекция 7.

СПЕКТРАЛЬНАЯ ПЛОТНОСТЬ МОЩНОСТИ СЛУЧАЙНОГО ПРОЦЕССА

Подразумевая под случайным процессом множество (ансамбль) реализаций, необходимо иметь в виду, что реализациям, обладающим различной формой, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности по всем реализациям приводит к нулевому спектру процесса (при среднем = 0) из-за случайности и независимости фаз спектральных составляющих в различных реализациях. Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной величины, поскольку величина среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией x(t) подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте ω . Введенную таким образом спектральную плотность S (ω) в дальнейшем будем называть энергетическим спектром функции x (t ) . Смысл такого названия определяется размерностью функции S (ω) , являющейся отношением мощности к полосе частот:

[S (ω) ] = [ мощность/ полоса частот ] = [мощность×время] = [энергия],

Энергетический спектр можно найти, если известен механизм образования случайного процесса. Здесь же мы ограничимся некоторыми определениями общего характера.

Методы вычисления СПМ

Функции спектральной плотности можно определять тремя различными эквивалентными способами, которые мы рассмотрим ниже:

С помощью ковариационных функций;

С помощью финитного преобразования Фурье;

С помощью фильтрации, возведения в квадрат и усреднения.

Определение спектров с помощью корреляционных функций.

Исторически первый способ определения спектральной плотности появился в математике. Он состоит во взятии преобразования Фурье от предварительно вычисленной корреляционной функции. После вычитания средних значений такие (бесконечные) преобразования Фурье обычно существуют, даже если (бесконечное) преобразование Фурье исходного процесса не существует. Этот подход дает двустороннюю спектральную плотность, определенную для частот f от - до + и обозначаемую S (f ) .

Пусть существуют корреляционные и взаимная корреляционная функции R x (t ), R y (t ) и R xy (t ) . Предположим также, что конечны интегралы от их абсолютных величин

R ( d

На практике эти условия всегда выполняются для реализаций конечной длины. Тогда ПФ функций R (t ) существуют и определяются формулами

S x (f)=

S y (f)=(1)

S xy (f)=

Такие интегралы по конечным реализациям существуют всегда. Функции S x (f ) и S y (f ) называют функциями спектральной плотности процессов x (t ) и y (t ) соответственно или просто спектральными плотностями, а функцию называют взаимной спектральной плотностью двух процессов x (t ) и y (t ) .

Обратные ПФ от формул (1) дают

R x (τ ) =

R y (τ ) = (2)

R xy (τ ) = df .

Соотношения (1) и (2) называют формулами Винера-Хинчина, которые в 30-е годы независимо установили связь между корреляционными функциями и спектральной плотностью через ПФ. При решении практических задач приходится допускать в R (t ) и S (f ) наличие дельта-функций.

Из свойств симметрии стационарных ковариационных функций следует

S x (-f) = S x (f) a S xy (-f) = S yx (f)


Следовательно, спектральная плотность S x (f ) – действительная четная функция, a S xy (f ) – комплексная функция от f .

Тогда спектральные соотношения из (1) можно преобразовать к виду

Формальное определение

Пусть - сигнал, рассматриваемый на промежутке времени . Тогда энергия сигнала на данном интервале равна:

= = = ,

где - спектральная функция сигнала. При , средняя мощность (дисперсия)

.

Спектральная плотность мощности (функция плотности спектра мощности).

Спектр плотности мощности сигнала сохраняет информацию только об амплитудах спектральных составляющих. Информация о фазе теряется. Поэтому все сигналы с одинаковым спектром амплитуд и различными спектрами фаз имеют одинаковые спектры плотности мощности.

Методы оценки

Оценка СПМ может выполняться методом преобразования Фурье , предполагающего получение спектра в области частот посредством быстрого преобразования Фурье (БПФ). До изобретения алгоритмов БПФ этот метод из-за громоздкости прямого вычисления дискретного преобразования Фурье (ДПФ) практически не использовался. Предпочтение отдавалось другим методам, в частности, методу корреляционной функции (Блэкмена-Тьюки) и периодограммному методу.

См. также

Литература

  • Цифровая обработка сигналов: Справочник. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. - М.: Радио и связь, .
  • Прикладной анализ временных рядов. Основные методы. Отнес Р., Эноксон Л. - М.: Мир, .

Wikimedia Foundation . 2010 .

  • Спектральная серия
  • Спектральные серии водорода

Смотреть что такое "Спектральная плотность мощности" в других словарях:

    Спектральная плотность мощности шума прибора СВЧ - 221. Спектральная плотность мощности шума прибора СВЧ Спектральная плотность мощности шума Noise spectral power density Pш Мощность шума прибора СВЧ в полосе 1 Гц Источник: ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины,… …

    Спектральная плотность мощности шумового диода - 140. Спектральная плотность мощности шумового диода G Отношение среднего квадратического значения мощности шумового диода к заданному диапазону частот Источник: ГОСТ 25529 82: Диоды полупроводниковые. Термины, определения и буквенные обозначения… … Словарь-справочник терминов нормативно-технической документации

    спектральная плотность мощности шума - spektrinis triukšmo galios tankis statusas T sritis radioelektronika atitikmenys: angl. noise spectral power density vok. Spektralleistungsdichte des Rauschens, f rus. спектральная плотность мощности шума, f pranc. densité spectrale de puissance… … Radioelektronikos terminų žodynas

    Spektrinis spinduliuotės galios tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Pasirinktosios spektro dalies vienetinio dažnio, bangos ilgio (ar kito su jais susijusio dydžio) intervalo vidutinė spinduliuotės galios vertė.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    спектральная плотность мощности излучения - spektrinis spinduliuotės galios tankis statusas T sritis fizika atitikmenys: angl. radiation power spectral density vok. spektrale Strahlungsleistungsdichte, f rus. спектральная плотность мощности излучения, f pranc. densité spectrale de… … Fizikos terminų žodynas

    относительная спектральная плотность мощности шума прибора СВЧ - Ндп. энергетический спектр шума энергетический спектр флуктуаций спектральная плотность шума ΔPш Отношение спектральной плотности мощности шума прибора СВЧ к выходной мощности в полосе 1 Гц. [ГОСТ 23769 79] Недопустимые, нерекомендуемые… … Справочник технического переводчика

    Относительная спектральная плотность мощности шума прибора СВЧ - 222. Относительная спектральная плотность мощности шума прибора СВЧ Ндп. Энергетический спектр шума Энергетический спектр флуктуации Спектральная плотность шума Relative noise spectral power density ΔPш Отношение спектральной плотности мощности… … Словарь-справочник терминов нормативно-технической документации

    Спектральная плотность - В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье. Если процесс имеет… … Википедия

    Спектральная плотность излучения - характеристика спектра излучения, равная отношению интенсивности (плотности потока) излучения в узком частотном интервале к величине этого интервала. Является применением понятия спектральной плотности мощности к электромагнитному излучению.… … Википедия

    Спектральная плотность энергии (мощности) лазерного излучения - 5. Спектральная плотность энергии (мощности) лазерного излучения* Спектральная плотность энергии (мощности) СПЭ (СПМ) Wλ, Wv, Pλ, Pv Источник … Словарь-справочник терминов нормативно-технической документации

Взаимная спектральная плотность мощности(взаимный спектр мощности) двух реализаций и стационарных эргодических случайных процессов и определяется как прямое преобразование Фурье над их взаимной ковариационной функцией

или, с учетом соотношения между круговой и циклической частотами ,

Обратное преобразование Фурье связывает взаимные ковариационную функцию и спектральную плотность мощности:

Аналогично (1.32), (1.33) вводится спектральная плотность мощности(спектр мощности) случайного процесса

Функция обладает свойством четности:

Для взаимной спектральной плотности справедливо следующее соотношение:

где – функция, комплексно сопряженная к .

Введенные выше формулы для спектральных плотностей определены как для положительных, так и для отрицательных частот и носят название двухсторонних спектральных плотностей . Они удобны при аналитическом изучении систем и сигналов. На практике же пользуются спектральными плотностями, определенными только для неотрицательных частот и называемыми односторонними (рисунок 1.14):

Рисунок 1.14 – Односторонняя и двусторонняя

спектральные плотности

Выведем выражение, связывающее одностороннюю спектральную плотность стационарного СП с его ковариационной функцией:

Учтем свойство четности для ковариационной функции стационарного СП и функции косинус, свойство нечетности для функции синус, а также симметричность пределов интегрирования. В результате второй интеграл в полученном выше выражении обращается в нуль, а в первом интеграле можно сократить вдвое пределы интегрирования, удвоив при этом коэффициент:

Очевидно, что спектральная плотность мощности случайного процесса является действительной функцией.

Аналогично можно получить обратное соотношение:

Из выражения (1.42) при следует, что

Это означает, что общая площадь под графиком односторонней спектральной плотности равна среднему квадрату случайного процесса. Другими словами, односторонняя спектральная плотность интерпретируется как распределение среднего квадрата процесса по частотам.

Площадь под графиком односторонней плотности, заключенная между двумя произвольными значениями частоты и , равна среднему квадрату процесса в этой полосе частот спектра (рисунок 1.15):

Рисунок 1.15 – Свойство спектральной плотности

Взаимная спектральная плотность мощности является комплексной величиной, поэтому ее можно представить в показательной форме записи через модуль и фазовый угол :


где – модуль;

– фазовый угол;

, – действительная и мнимая части функции соответственно.

Модуль взаимной спектральной плотности входит в важное неравенство

Это неравенство позволяет определить функцию когерентности (квадрат когерентности), которая аналогична квадрату нормированной корреляционной функции:

Второй способ введения спектральных плотностей состоит в непосредственном преобразовании Фурье случайных процессов.

Пусть и – два стационарных эргодических случайных процесса, для которых финитные преобразования Фурье -х реализаций длины определяют в виде

Двусторонняя взаимная спектральная плотность этих случайных процессов вводится с использованием произведения через соотношение

где оператор математического ожидания означает операцию усреднения по индексу .

Расчет двусторонней спектральной плотности случайного процесса осуществляют по соотношению

Аналогично вводятся и односторонние спектральные плотности:

Функции , определенные формулами (1.49), (1.50), идентичны соответствующим функциям, определенным соотношениями (1.32), (1.33) как преобразования Фурье над ковариационными функциями. Это утверждение носит называние теоремы Винера-Хинчина.

Контрольные вопросы

1. Приведите классификацию детерминированных процессов.

2. В чем отличие между полигармоническими и почти периодическими процессами?

3. Сформулируйте определение стационарного случайного процесса.

4. Какой способ усреднения характеристик эргодического случайного процесса предпочтителен – усреднение по ансамблю выборочных функций или усреднение по времени наблюдения одной реализации?

5. Сформулируйте определение плотности распределения вероятности случайного процесса.

6. Запишите выражение, связывающее корреляционную и ковариационную функции стационарного случайного процесса.

7. В каком случае два случайных процесса считаются некоррелированными?

8. Укажите способы расчета среднего квадрата стационарного случайного процесса.

9. Каким преобразованием связаны спектральная плотность и ковариационная функции случайного процесса?

10. В каких пределах изменяются значения функции когерентности двух случайных процессов?

Литература

1. Сергиенко, А.Б. Цифровая обработка сигналов / А.Б. Сергиенко. – М: Питер, 2002.– 604 с.

2. Садовский, Г.А. Теоретические основы информационно-измерительной техники / Г.А. Садовский. – М.: Высшая школа, 2008. – 480 с.

3. Бендат, Д. Применение корреляционного и спектрального анализа / Д. Бендат, А. Пирсол. – М.: Мир, 1983. – 312 с.

4. Бендат, Д. Измерение и анализ случайных процессов / Д. Бендат, А. Пирсол. – М.: Мир, 1974. – 464 с.

Ниже приводится краткое описание некоторых сигналов и опре­деляются их спектральные плотности. При определении спектраль­ных плотностей сигналов, удовлетворяющих условию абсолютной интегрируемости, пользуемся непосредственно формулой (4.41).

Спектральные плотности ряда сигналов приведены в табл. 4.2.

1) Импульс прямоугольной формы (табл. 4.2, поз. 4). Колебание, изобра­женное на рис. (4.28, а), можно записать в виде

Его спектральная плотность

График спектральной плотности (рис. 4.28, а) построен на основе прове­данного ранее анализа спектра периодической последовательности однополярных, прямоугольных импульсов (4.14). Как видно из (рис. 4.28, б), функция обра­щается в нуль при значениях аргумента = n , где п - 1, 2, 3, ... - лю­бое целое число. При этом угловые частоты равны = .

Рис. 4.28. Импульс прямоугольной формы (а) и его спектральная плотность (б)

Спектральная плотность импульса при численно равна его площади, т.еG (0)=A . Это положение справедливо для импульса s (t ) произвольной формы. Действительно, полагая в общем выражении (4.41) = 0, получим

т. е. площадь импульса s (t ).

Таблица 4.3.

Сигнал s (t )

Спектральная плотность

При растягивании импульса расстояние между нулями функциисокращается, т. е. происходитсжатие спектра. Значение при этом возра­стает. Наоборот, при сжатии импульса происходит расширение его спектра а значение уменьшается. На (рис. 4.29, а, б) приведены графики амплитудного и фазового испектров прямоугольного импульса.

Рис. 4.29. Графики амплитудного (а) Рис. 4.30. Импульс прямоугольной формы, и фазового (б) спектров сдвинутый на время

При сдвиге импульса вправо (за­паздывание) на время (рис. 4.30) фазовый спектр изменяется на величи­ну, определяемую аргументом множителяexp() (табл. 4.2, поз. 9). Результирующий фазовый спектр запаздывающего импульса изо­бражен на рис. 4.29, б пунктирной ли­нией.

2) Дельта-функция (табл. 4.3, поз. 9). Спектральную плотность – функции находим по формуле (4.41), используя фильтрующее свойствоδ -функции:

Таким образом, амплитудный спектр равномерный и определяется пло­щадьюδ -функции [= 1], а фазовый спектр равен нулю [= 0].

Обратным преобразованием Фурье от функции = 1 пользуются как одним из определенийδ -функции:

Пользуясь свойством временного сдвига (табл. 4.2, поз. 9), определяем спект­ральную плотность функции , запаздывающей на время относительно:

Амплитудный и фазовый спектры функции показаны в табл. 4.3, поз. 10. Обратное преобразование Фурье от функции имеет вид

3) Гармоническое колебание (табл. 4.3, поз. 12). Гармони­ческое колебание не является абсолютно интегрируемым сигналом. Тем не ме­нее для определения его спектральной плотностиприменяют прямое пре­образование Фурье, записывая формулу (4.41) в виде:

Тогда с учетом (4.47) получаем

δ(ω) – дельта-функции, смещенные по оси частот на частоту , соответственно вправо и влево относительно. Как видно из (4.48), спектральная плотность гармонического колебания с конечной амплитудой принимает бесконечно боль­шое значение на дискретных частотахи.

Выполняя аналогичные преобразования, можно получить спектральную плотность колебания (табл. 4.3, поз. 13)

4) Функция вида (табл. 4.3, поз. 11)

Спектральная плотность сигнала в виде постоянного уровня А определяется по формуле (4.48), положив = 0:

5) Единичная функция (или единичный скачок) (табл. 4.3, поз. 8). Функция не является абсолютно интегрируемой. Если представить как предел экспоненциального импульса , т. е.

то спектральную плотность функцииможно определить как предел спектральной плотности экспоненциального импульса (табл. 4.3, поз. 1) при :

Припервое слагаемое в правой части этого выражения равно нулю на всех частотах, кроме= 0, где оно обращается в бесконечность, а площадь под функцией равна постоянной величине

Поэтому пределом первого слагаемого можно считать функцию . Преде­лом второго слагаемого является функция. Окончательно получим

Наличие двух слагаемых в выражении (4.51) согласуется с представлением функции в виде 1/2+1/2sign(t ). Постоянной составляющей 1/2 со­гласно (4.50) соответствует спектральная плотность , а нечетной функции - мнимое значение спектральной плотности .

При анализе воздействия единичного скачка на цепи, передаточная функция которых при = 0 равна нулю (т. е. на цепи, не пропускающие по­стоянный ток), в формуле (4.51) можно учитывать только второе слагаемое, представляя спектральную плотность единичного скачка в виде

6) Комплексный экспоненциальный сигнал (табл. 4.3, поз. 16). Если представить функциюв виде

то на основании линейности преобразования Фурье и с учетом выражений (4.48) и (4.49) спектральная плотность комплексного экспоненциального сигнала

Следовательно, комплексный сигнал обладает несимметричным спект­ром, представленным одной дельта-функцией, смещенной на частотувправо относительно.

7) Произвольная периодическая функция. Представим произвольную перио­дическую функцию (рис. 4.31, а) комплексным рядом Фурье

где - частота следования импульсов.

Коэффициенты ряда Фурье

выражаются через значения спектральной плотности одиночного импуль­са s (t ) на частотах (n =0, ±1, ±2, ...). Подставляя (4.55) в (4.54) и поль­зуясь соотношением (4.53), определяем спектральную плотность перио­дической функции:

Согласно (4.56) спектральная плотность произвольной периодической функции имеет вид последовательности-функций, смещенных друг от­носительно друга, на частоту (рис. 4.31, б). Коэффициенты при δ -функциях изменяются в соответствии со спектральной плотностьюодиночного им­пульсаs (t ) (пунктирная кривая на рис. 4.31,б).

8) Периодическая последовательность δ-функций (табл. 4.3, поз. 17). Спект­ральная плотность периодической последовательности –функций

определяется по формуле (4.56) как частный случай спектральной плотности периодической функции при = 1:

Рис.4.31. Произвольная последовательность импульсов (а) и её спектральная плотность (б)

Рис. 4.32. Радиосигнал (а), спектральные плотности радиосигнала (в) и его огибающей (б)

и имеет вид периодической последовательности δ -функций, умноженных на ко­эффициент .

9) Радиосигнал с прямоугольной огибающей. Радиосигнал, представленный на (рис. 4.32,а), можно записать как

Согласно поз. 11 табл.4.2 спектральная плотность радиосигнала полу­чается путем сдвига спектральной плотностипрямоугольной огибающей по оси частот на вправо и влево с уменьшением ординат в два раза, т. е.

Это выражение получается из (4.42) путем замены частоты на частоты– сдвиг вправо и- сдвиг влево. Преобразование спектра огибающейпоказано на (рис. 4.32, б, в).

Примеры расчета спектров непериодических сигналов приведены так же в .

Международная образовательная корпорация

Факультет Прикладных Наук

Реферат

на тему «Спектр плотности мощности и его связь с функцией корреляции»

По дисциплине «Теория электрической связи»

Выполнила: студент группы

ФПН-РЭиТ(з)-4С *

Джумагельдин Д

Проверила: Глухова Н.В

Алматы, 2015

І Введение

ІІ Основная часть

1. Спектральная плотность мощности

1.1 Случайные величины

1.2 Плотность вероятности функции от случайной величины

2. Случайный процесс

3. Метод определения спектральной плотности мощности по корреляционной функции

ІІІ Заключение

ІV Список использованной литературы

Введение

Теория вероятностей рассматривает случайные величины и их характеристики в "статике". Задачи описания и изучения случайных сигналов "в динамике", как отображения случайных явлений, развивающихся во времени или по любой другой переменной, решает теория случайных процессов.

В качестве универсальной координаты для распределения случайных величин по независимой переменной будем использовать, как правило, переменную "t" и трактовать ее, чисто для удобства, как временную координату. Распределения случайных величин во времени, а равно и сигналов их отображающих в любой математической форме, обычно называют случайными процессами. В технической литературе термины "случайный сигнал" и "случайный процесс" используются как синонимы.

В процессе обработки и анализа физико-технических данных обычно приходится иметь дело с тремя типами сигналов, описываемых методами статистики. Во-первых, это информационные сигналы, отображающие физические процессы, вероятностные по своей природе, как, например, акты регистрации частиц ионизирующих излучения при распаде радионуклидов. Во вторых, информационные сигналы, зависимые от определенных параметров физических процессов или объектов, значения которых заранее неизвестны, и которые обычно подлежать определению по данным информационным сигналам. И в третьих, это шумы и помехи, хаотически изменяющиеся во времени, которые сопутствуют информационным сигналам, но, как правило, статистически независимы от них как по своим значениям, так и по изменениям во времени.



Спектральная плотность мощности

Спектральная плотность мощности позволяет судить о частотных свойствах случайного процесса. Она характеризует его интенсивность при различных частотах или, иначе, среднюю мощность, приходящуюся на единицу полосы частот.

Картину распределения средней мощности по частотам называют спектром мощности. Прибор, при помощи которого измеряется спектр мощности, называется анализатором спектра. Найденный в результате измерений спектр называется аппаратным спектром.

Работа анализатора спектра основана на следующих методах измерений:

· методе фильтрации;

· методе преобразования по теореме Винера-Хинчена;

· методе Фурье-преобразования;

· методе с использованием знаковых функций;

· методе аппаратного применения ортогональных функций.

Особенность измерения спектра мощности состоит в значительной продолжительности эксперимента. Нередко она превышает длительность существования реализации, или время, в течение которого сохраняется стационарность исследуемого процесса. Оценки спектра мощности, получаемые по одной реализации стационарного эргодического процесса, не всегда приемлемы. Часто приходится выполнять многочисленные измерения, так как необходимо усреднение реализаций как по времени, так и по ансамблю. Во многих случаях реализации исследуемых случайных процессов предварительно запоминают, что позволяет многократно повторять эксперимент с изменением продолжительности анализа, использованием различных алгоритмов обработки и аппаратуры.

В случае предварительной записи реализаций случайного процесса аппаратурные погрешности могут быть уменьшены до значений, обусловленных конечной длительностью реализации и нестационарностью.

Запоминание анализируемых реализаций позволяет ускорить аппаратурный анализ и автоматизировать его.

Случайные величины

Случайная величина описывается вероятностными законами. Вероятность того, что непрерывная величина х при измерении попадет в какой-либо интервал х 1 <х <х 2 , определяется выражением:

, где p(x) - плотность вероятности, причем . Для дискретной случайной величины х i P(x = x i)=P i , где P i - вероятность, соответствующая i-у уровню величины х.